
DIMSPy
Release 2.0.0

Ralf Weber, Jiarui (Albert) Zhou

Apr 26, 2020

CONTENTS

1 Contents 3
1.1 Installation . 3

1.1.1 Conda (recommended) . 3
1.1.2 PyPi . 4
1.1.3 Testing . 4

1.2 API reference . 4
1.2.1 tools . 4
1.2.2 metadata . 12
1.2.3 models . 13
1.2.4 portals . 32
1.2.5 process . 36

1.3 Command Line Interface . 42
1.4 Credits . 44

1.4.1 Developers & Contributors . 44
1.4.2 Funding . 44

1.5 Bugs and Issues . 44
1.6 Changelog . 44

1.6.1 DIMSpy v2.0.0 . 44
1.6.2 DIMSpy v1.4.0 . 45
1.6.3 DIMSpy v1.3.0 . 45
1.6.4 DIMSpy v1.2.0 . 45
1.6.5 DIMSpy v1.1.0 . 45
1.6.6 DIMSpy v1.0.0 . 45
1.6.7 DIMSpy v0.1.0 (pre-release) . 45

1.7 Citation . 45
1.8 License . 46

2 Indices and tables 47

Python Module Index 49

Index 51

i

ii

DIMSPy, Release 2.0.0

Python package for processing direct-infusion mass spectrometry-based metabolomics and lipidomics data

CONTENTS 1

https://pypi.python.org/pypi/dimspy/
https://pypi.python.org/pypi/dimspy/
http://bioconda.github.io/recipes/dimspy/README.html
http://usegalaxy.eu
https://github.com/computational-metabolomics/dimspy
https://travis-ci.com/computational-metabolomics/dimspy
https://ci.appveyor.com/project/RJMW/dimspy/branch/master
https://codecov.io/gh/computational-metabolomics/dimspy
https://www.gnu.org/licenses/gpl-3.0.html
https://mybinder.org/v2/gh/computational-metabolomics/dimspy/master?filepath=notebooks%2Fworkflow.ipynb
https://dimspy.readthedocs.io/en/latest/

DIMSPy, Release 2.0.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation

1.1.1 Conda (recommended)

Install Miniconda, follow the steps described here

Start the conda prompt

• Windows: Open the Anaconda Prompt via the Start menu

• macOS or Linux: Open a Terminal

Create a dimspy specific conda environment. This will install a the dependencies required to run dimspy:

$ conda create --yes --name dimspy -c conda-forge -c bioconda -c computational-
→˓metabolomics

Note:

• The installation process will take a few minutes.

• Feel free to use a different name for the Conda environment

You can use the following command to remove a conda environment:

$ conda env remove -y --name dimspy

This is only required if something has gone wrong in the previous step.

Activate the dimspy environment:

$ conda activate dimspy

To test your dimspy installation, in your Conda Prompt, run the command:

$ dimspy --help

or:

$ python
import dimspy

Close and deactivate the dimspy environment when you’re done:

3

https://docs.conda.io/projects/conda/en/latest/user-guide/install

DIMSPy, Release 2.0.0

$ conda deactivate

1.1.2 PyPi

Install the current release of dimspy with pip:

$ pip install dimspy

Note:

• The installation process will take a few minutes.

To upgrade to a newer release use the --upgrade flag:

$ pip install --upgrade dimspy

If you do not have permission to install software systemwide, you can install into your user directory using the --user
flag:

$ pip install --user dimspy

Alternatively, you can manually download dimspy from GitHub or PyPI. To install one of these versions, unpack it
and run the following from the top-level source directory using the Terminal:

$ pip install .

1.1.3 Testing

DIMSpy uses the Python pytest testing package. You can learn more about pytest on their homepage.

1.2 API reference

1.2.1 tools

dimspy.tools.process_scans(source: str, function_noise: str, snr_thres: float, ppm: float,
min_fraction: Optional[float] = None, rsd_thres: Optional[float]
= None, min_scans: int = 1, filelist: Optional[str] = None,
skip_stitching: bool = False, remove_mz_range: list = None, ring-
ing_thres: Optional[float] = None, filter_scan_events: Dict = None,
report: Optional[str] = None, block_size: int = 5000, ncpus: int =
None)

Extract, filter and average spectral data from input .RAW or .mzML files and generate a single mass spectral
peaklist (object) for each of the data files within a directory or defined in the ‘filelist’ (if provided).

Warning: When using .mzML files generated using the Proteowizard tool, SIM-type scans will only be
treated as spectra if the ‘simAsSpectra’ filter was set to true during the conversion process: msconvert.exe
example.raw –simAsSpectra –64 –zlib –filter “peakPicking true 1-”

4 Chapter 1. Contents

https://github.com/computational-metabolomics/dimspy/releases
https://pypi.python.org/pypi/dimspy
https://pytest.org

DIMSPy, Release 2.0.0

Parameters

• source – Path to a set/directory of .raw or .mzML files

• function_noise – Function to calculate the noise from each scan. The following op-
tions are available:

– median - the median of all peak intensities within a given scan is used as the noise value.

– mean - the unweighted mean average of all peak intensities within a given scan is used
as the noise value.

– mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute
differences between peak intensities and the mean peak intensity (calculated across all
peak intensities within a given scan).

– noise_packets - the noise value is calculated using the proprietary algorithms contained
in Thermo Fisher Scientific’s msFileReader library. This option should only be applied
when you are processing .RAW files.

• snr_thres – Peaks with a signal-to-noise ratio (SNR) less-than or equal-to this value will
be removed from the output peaklist.

• ppm – Maximum tolerated m/z deviation in parts per million.

• min_fraction – A numerical value from 0 to 1 that specifies the minimum proportion of
scans a given mass spectral peak must be detected in, in order for it to be kept in the output
peaklist. Here, scans refers to replicates of the same scan event type, i.e. if set to 0.33, then
a peak would need to be detected in at least 1 of the 3 replicates of a given scan event type.

• rsd_thres – Relative standard deviation threshold - A numerical value equal-to or
greater-than 0. If greater than 0, then peaks whose intensity values have a percent rela-
tive standard deviation (otherwise termed the percent coefficient of variation) greater-than
this value are excluded from the output peaklist.

• min_scans – Minimum number of scans required for each m/z window or event within a
raw/mzML data file.

• filelist – A tab-delimited text file containing filename and classLabel information for
each experimental sample. These column headers MUST be included in the first row of
the table. For a standard DIMS experiment, users are advised to also include the following
additional columns:

– injectionOrder - integer values ranging from 1 to i, where i is the total number of in-
dependent injections performed as part of a DIMS experiment. e.g. if a study included
20 samples, each of which was injected as four independent replicates, there would be at
least 20 * 4 injections, so i = 80 and the range for injection order would be from 1 to 80
in steps of 1.

– replicate - integer value from 1 to r, indicating the order in which technical replicates of
each study sample were injected in to the mass spectrometer, e.g. if study samples were
analysed in quadruplicate, r = 4 and integer values are accordingly 1, 2, 3, 4.

– batch - integer value from 1 to b, where b corresponds to the total number of batches
analysed under define analysis conditions, for any given experiment. e.g. : if 4 inde-
pendent plates of polar extracts were analysed in the positive ionisation mode, then valid
values for batch are 1, 2, 3 and 4.

This filelist may include additional columns, e.g. additional metadata relating to study sam-
ples. Ensure that columns names do not conflict with existing column names.

1.2. API reference 5

DIMSPy, Release 2.0.0

• skip_stitching – Selected Ion Monitoring (SIM) scans with overlapping scan ranges
can be “stitched” together in to a pseudo-spectrum. This is achieved by setting this parame-
ter to False (default).

• remove_mz_range – This option allows for specific m/z regions of the output peaklist
to be deleted, this option may be useful for removing sections of a spectrum known to
correspond to system noise peaks.

• ringing_thres – Fourier transform-based mass spectra often contain peaks (ringing
artefacts) around spectral features that require removal. This threshold is a positive float
indicating the required relative intensity a peak must exceed (with reference to the largest
peak in a cluster of peaks) in order to be retained.

• filter_scan_events – Include or exclude specific scan events, by default all ALL
scan events will be included. To include or exclude specific scan events use the following
format of a dictionary.

>>> {"include":[[100, 300, "sim"]]} or {"include":[[100, 1000,
→˓"full"]]}

• report – A tab-delimited text file to write measures of quality (e.g. RSD, number of
peaks, etc) for each scan event processed in each .RAW or .mzML files.

• block_size – Number peaks in each centre clustering block.

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all
CPUs that are available

Returns List of peaklist objects

dimspy.tools.replicate_filter(source: Union[Sequence[dimspy.models.peaklist.PeakList], str],
ppm: float, replicates: int, min_peaks: int, rsd_thres: Op-
tional[float] = None, filelist: Optional[str] = None, report: Op-
tional[str] = None, block_size: int = 5000, ncpus: int = None)

Peaks from each technical replicate (for a given study sample) are aligned using a one-dimensional hierarchical
clustering procedure (applied on the mass-to-charge level). Peaks are aligned only if the difference in their
mass-to-charge ratios, when divided by the average of their mass-to-charge ratios and multiplied by 1 × 106

(i.e. when measured in units of parts-per-million, ppm), is less-than or equal-to the user-defined ‘ppm error
tolerance’. After alignment, a set of user-defined filters are applied to retain only those peaks that:

• occur in equal-to or more-than the user-defined ‘Number of technical replicates a peak has to be present
in’, i.e. if set to 2, then a peak must be detected in at least two of the replicate analyses, and/or

• have relative standard deviation (measured in %; may otherwise be referred to as the percent coefficient
of variation) of intensity values, across technical replicates, that is equal-to or less-than the user-defined
‘relative standard deviation threshold’ (if defined, otherwise ignored).

Warning: When the parameter “number of technical replicates for each sample” is set to a value less-than
the total number of technical replicates actually acquired for each study sample, this tool will automatically
determine which combination of technical replicates to combine. See the parameter description (below) for
further details.

Parameters

• source – A list of processed peaklist objects generated by ‘process_scans’ or path to .hdf5
file

• ppm – Maximum tolerated m/z deviation in parts per million.

6 Chapter 1. Contents

DIMSPy, Release 2.0.0

• replicates – Number of technical replicates for each sample - the total number of tech-
nical replicates acquired for each study sample. This value must be set to the lowest number
of technical replicates acquired for ANY of the study samples, or alternatively, may be set
to the minimum number of replicates the user would like to select from the total number of
technical replicates for a biological sample.

• min_peaks – Minimum number of technical replicates a peak has to be present in. For a
given biological sample, the number of replicates that will be used to generate the replicate-
filtered peaklist. If this parameter is set to a value less-than the total number of technical
replicates acquired for each biological sample, it will automatically determines which com-
bination of technical replicates yields the best overall rank. Otherwise, all technical repli-
cates are used. Ranking of the combinations of technical replicates is based on the average
of the following three scores:

– score 1: peak count / peak count present in n-out-n (e.g. 3-out-of-3)

– score 2: peak count present in x-out-of-n (e.g. 3-out-of-3) / MAX peak count present in
x-out-of-n across sets of replicates

– score 3: RSD categories (0-5 (score=1.0), 5-10 (score=0.9), 10-15 (score=0.8), etc)

• rsd_thres – Relative standard deviation threshold - a numerical value from 0 upwards
that defines the acceptable percentage relative standard deviation (otherwise termed the per-
cent coefficient of variation) of a peak’s intensity across technical replicates. Peaks are
removed from the output ‘replicate-filtered’ peaklist if this condition is not met. Set to None
to skipe this filter.

• filelist – A tab-delimited text file containing filename and classLabel information for
each experimental sample. There is no need to provide a filelist again if this has been done
already as part of one of the previous processing steps (i.e. see process scans or replicate
filter) - except if specific samples need to be excluded. These column headers MUST be
included in the first row of the table. For a standard DIMS experiment, users are advised to
also include the following additional columns:

– injectionOrder - integer values ranging from 1 to i, where i is the total number of in-
dependent injections performed as part of a DIMS experiment. e.g. if a study included
20 samples, each of which was injected as four independent replicates, there would be at
least 20 * 4 injections, so i = 80 and the range for injection order would be from 1 to 80
in steps of 1.

– replicate - integer value from 1 to r, indicating the order in which technical replicates of
each study sample were injected in to the mass spectrometer, e.g. if study samples were
analysed in quadruplicate, r = 4 and integer values are accordingly 1, 2, 3, 4.

– batch - integer value from 1 to b, where b corresponds to the total number of batches
analysed under define analysis conditions, for any given experiment. e.g. : if 4 inde-
pendent plates of polar extracts were analysed in the positive ionisation mode, then valid
values for batch are 1, 2, 3 and 4.

This filelist may include additional columns, e.g. additional metadata relating to study sam-
ples. Ensure that columns names do not conflict with existing column names.

• report – A tab-delimited text file to write measures of quality (e.g. RSD, number of
peaks, etc) for each processed ‘replicate-filtered’ peaklist.

• block_size – Number peaks in each centre clustering block.

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all
CPUs that are available

Returns List of peaklist objects

1.2. API reference 7

DIMSPy, Release 2.0.0

dimspy.tools.align_samples(source: Union[Sequence[dimspy.models.peaklist.PeakList], str], ppm:
float, filelist: Optional[str] = None, block_size: int = 5000, ncpus: int
= None)

Study samples (i.e. PeakList Objects) are aligned to create PeakMatrix object. The PeakMatrix object comprises
of a table, with samples along one axis and the mass-to-charge ratios of detected mass spectral peaks along the
opposite axis. At the intersection of sample and mass-to-charge ratio, the intensity is given for a specific peak
in a specific sample (if no intensity recorded, then ‘nan’ is inserted).

Parameters

• source – A list of processed peaklist objects generated by ‘process_scans’ and/or ‘repli-
cate_filter’, or path to .hdf5 file.

• ppm – Maximum tolerated m/z deviation in parts per million.

• filelist – A tab-delimited text file containing filename and classLabel information for
each experimental sample. There is no need to provide a filelist again if this has been done
already as part of one of the previous processing steps (i.e. see process scans or replicate
filter) - except if specific samples need to be excluded. These column headers MUST be
included in the first row of the table.

This filelist may include additional columns, e.g. additional metadata relating to study sam-
ples. Ensure that column names do not conflict with existing column names.

• block_size – Number peaks in each centre clustering block.

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all
CPUs that are available

Returns PeakMatrix object

dimspy.tools.blank_filter(peak_matrix: Union[dimspy.models.peak_matrix.PeakMatrix, str],
blank_label: str, min_fraction: float = 1.0, min_fold_change: float
= 1.0, function: str = 'mean', rm_samples: bool = True, labels:
Optional[str] = None)

Parameters

• peak_matrix – PeakMatrix object

• blank_label – Label for the blank samples - a string indicating the name of the class
to be used for filtering (e.g. blank), i.e. the “reference” class. This string must have been
included in the “classLabel” column of the metadata file associated with the process_sans
or replicate_filter function(s).

• min_fraction – A numeric value ranging from 0 to 1. Setting this value to None or 0 will
skip this filtering step. A value greater than 0 requires that for each peak in the peak intensity
matrix, at least this proportion of non-reference samples have to have an intensity value that
exceeds the product of: (A) the average intensity of “reference” class intensities and (B) the
user-defined “min_fold_change”. If this condition is not met, the peak is removed from the
peak intensity matrix.

• min_fold_change – A numeric value from 0 upwards. When minimum fraction filtering
is enabled, this value defines the minimum required ratio between the intensity of a peak in
a “non-reference” sample and the average intensity of the “reference” sample(s). Peaks
with ratios exceeding this threshold are considered to have been reliably detected in a “non-
reference” sample.

• function – Function to calculate the ‘reference’ intensity

– mean - corresponds to using the non-weighted average of “reference” sample peak in-
tensities (NA values are ignored) in calculating the “reference” to “non-reference” peak

8 Chapter 1. Contents

DIMSPy, Release 2.0.0

intensity ratio.

– median - corresponds to using the median of “reference” sample peak intensities (NA
values are ignored) in calculating the “reference” to “non-reference” peak intensity ratio.

– max corresponds to the use of the maximum intensity among “reference” sample peak
intensities (NA values are ignored) in calculating the “reference” to “non-reference” peak
intensity ratio.

• rm_samples – Remove blank samples from the output peak matrix: * True - samples
belonging to the user-defined “reference” class are removed from the output peak matrix *
False - samples belonging to the user-defined “reference” class are retained in the output
peak matrix.

• labels – Path to the metadata file

Returns PeakMatrix object

dimspy.tools.sample_filter(peak_matrix: Union[dimspy.models.peak_matrix.PeakMatrix, str],
min_fraction: float, within: bool = False, rsd_thres: Optional[float] =
None, qc_label: Optional[str] = None, labels: Optional[str] = None)

Removes peaks from the input PeakMatrix object (or .hdf5 file that were detected in fewer-than a user-defined
minimum number of study samples.

There are many and varied reasons why a peak may not have been detected in all study samples, including:

• due to having an intensity (concentration) close to the signal-to-noise limit of the system;

• due to having been present in only one of the study classes (e.g. a drug administered to the ‘treatment’
class samples);

• due to ion suppression/enhancement effects in the mass spectrometer source region; etc.

Parameters

• peak_matrix – PeakMatrix object or path to .hdf5 file

• min_fraction – Minimum fraction - a numeric value between 0 and 1 indicating the
proportion of study samples in which a peak must have a recorded intensity value in order
for it to be retained in the output peak intensity matrix; e.g. 0.5 means that at least 50% of
samples (whether assessed across all classes, or within each class individually) must have a
recorded intensity value for a specific peak in order for it to be retained in the output peak
matrix.

• within – Apply sample filter within each sample class

– False - check across ALL classes simultaneously whether greater-than the user-defined
“Minimum fraction” of samples contained an intensity value for a specific mass spectral
peak.

– True - check within EACH class separately whether greater-than the user-defined “Mini-
mum fraction” of samples contained an intensity value for a specific mass spectral peak.

Warning: if in ANY class a peak is detected in greater-than the user-defined minimum
fraction of samples, then the peak is retained in the output peak matrix. For classes in
which this condition is not met, the peak intensity recorded for that peak (if any) will still
be presented in the output peak matrix. If no peak intensity was recorded in a sample,
then a ‘0’ is inserted in to the peak matrix.

1.2. API reference 9

DIMSPy, Release 2.0.0

• rsd_thres – Relative standard deviation threshold - A numerical value equal-to or
greater-than 0. If greater than 0, then peaks whose intensity values have a percent rela-
tive standard deviation (otherwise termed the percent coefficient of variation) greater-than
this value are excluded from the output PeakMatrix object.

• qc_label – Label for the QC samples - a string indicating the name of the class to be
used for filtering, i.e. the “reference” class. This string must have been included in the
“classLabel” column of the metadata file associated with the process_sans or replicate_filter
function(s).

• labels – Path to a metadata file

Returns PeakMatrix object

dimspy.tools.missing_values_sample_filter(peak_matrix: dim-
spy.models.peak_matrix.PeakMatrix,
max_fraction: float)

Removes study samples with greater-than a user-defined “Maximum percentage of missing values” from the
peak intensity matrix. A missing value is defined as the absence of a recorded peak intensity value for a specific
mass spectral peak, in a specific study sample.

Samples with large numbers of missing values are often observed where a failed mass spectral acquisition has
occurred, the reasons for which are many and diverse.

Parameters

• peak_matrix – PeakMatrix object

• max_fraction –

Maximum percentage of missing values (REQUIRED; default = 0.8) - a numeric value ranging
from 0 to 1 (decimal representation of percentage), where:

– A value of 0 (i.e. 0%) corresponds to a very harsh filtering procedure, in which only those
samples with zero missing values are retained in the output peak matrix.

– A value of 1 (i.e. 100%) corresponds to a very liberal filtering procedure, in which sam-
ples with as many as 100% missing values will be retained in the output peak matrix.

Returns PeakMatrix object

dimspy.tools.remove_samples(obj: Union[dimspy.models.peak_matrix.PeakMatrix, Se-
quence[dimspy.models.peaklist.PeakList]], sample_names: list)

Remove samples from a PeakMatrix or list of PeakLists

Parameters

• obj – PeakMatrix object or List of PeakList objects

• sample_names – List of sample names (Peaklist IDs)

Returns PeakMatrix object or List of Peaklist Objects

dimspy.tools.hdf5_peak_matrix_to_txt(filename: str, path_out: str, attr_name: str = 'inten-
sity', rsd_tags: tuple = (), delimiter: str = '\t', sam-
ples_in_rows: bool = True, comprehensive: bool =
False, compatibility_mode: bool = False)

Converts a .hdf5 file, containing a peak intensity matrix, to an user-friendly .tsv (tab-separated values) file.

Parameters

• filename – Path to the .hdf5 file to read from.

10 Chapter 1. Contents

DIMSPy, Release 2.0.0

• path_out – Path to a text file to write to.

• attr_name – The Peak Matrix should contain Intensity|m/z|SNR| values

• rsd_tags – Calculate RDS values for the following sample classes (e.g. QC, control)

• delimiter – Values on each line of the file are separated by this character.

• samples_in_rows – Should the rows or columns represent the samples?

• comprehensive – Comprehensive Peak Matrix (e.g. m/z and intensity, rsd, missing
values).

• compatibility_mode – Set to True to read .hdf5 files from dimspy < v2.0 exported
.hdf5 files

dimspy.tools.hdf5_peaklists_to_txt(filename: str, path_out: str, delimiter: str = '\t', compati-
bility_mode: bool = False)

Converts a .hdf5 file, containing a list peaklists, to user-friendly .tsv (tab-separated values) files.

Parameters

• filename – Path to the .hdf5 file to read from.

• path_out – Path to directory to write to.

• delimiter – Values on each line of the file are separated by this character.

• compatibility_mode – Set to True to read .hdf5 files exported using dimspy < v2.0.

dimspy.tools.merge_peaklists(source: Sequence[dimspy.models.peaklist.PeakList], filelist: Op-
tional[str] = None)

Extracts and exports specific PeakList object from one or more list or one or more .hdf5 files, to one or more lists
or .hdf5 files. If more-than one .hdf5 file is exported, users can control which subset of peaklists are exported to
which list.

Parameters

• source – List or tuple of Peaklist objects, or .hdf5 files

• filelist – A tab-delimited text file containing metadata to determine which peaklists are
exported together:

Example of a filelist - the optional multilist column determines which peaklists are exported
together.

filename classLabel replicate batch injectionOrder multilist [. . .]
sample_rep1.raw sample 1 1 1 1 [. . .]
sample_rep2.raw sample 2 1 2 1 [. . .]
sample_rep3.raw sample 3 1 3 1 [. . .]
sample_rep4.raw sample 4 1 4 1 [. . .]
blank_rep1.raw blank 1 1 5 2 [. . .]
blank_rep2.raw blank 2 1 6 2 [. . .]
blank_rep3.raw blank 3 1 7 2 [. . .]
blank_rep4.raw blank 4 1 8 2 [. . .]
. [. . .]

Returns Nested lists of Peaklist objects (e.g. [[pl_01, pl_02], [pl_03, pl_04, pl05]]

dimspy.tools.partition(alist: list, indices: list)
Divide separated lists into nested sublists

Parameters

1.2. API reference 11

DIMSPy, Release 2.0.0

• alist – List

• indices – Indices

Returns Nested List

dimspy.tools.load_peaklists(source: Sequence[dimspy.models.peaklist.PeakList])
Load a set of processed PeakLists

Parameters source – list of Peaklist objects, .hdf5 file, or path to a directory

Returns List of Peaklist Objects

dimspy.tools.create_sample_list(source: Union[Sequence[dimspy.models.peaklist.PeakList],
dimspy.models.peak_matrix.PeakMatrix], path_out: str,
delimiter: str = '\t')

Create a sample list based on a existing list of PeakList Objects or PeaMatrix Object.

Parameters

• source – List of PeakList objects or PeakMatrix object

• path_out – Path to a text file text file to write to.

• delimiter – Values on each line of the file are separated by this character.

1.2.2 metadata

dimspy.metadata.count_ms_types(hs: list)→ int
Count the number of unique ms types

Parameters hs – List of headers or filter strings

Returns Count

dimspy.metadata.count_scan_types(hs: list)→ int
Count the number of unique scan types

Parameters hs – List of headers or filter strings

Returns Count

dimspy.metadata.idxs_reps_from_filelist(replicates: list)

Parameters replicates –

Returns

dimspy.metadata.interpret_method(mzrs: list)
Interpret and define type of method

Parameters mzrs – Nested list of m/z ranges / windows

Returns Type of MS method

dimspy.metadata.mode_type_from_header(h: str)→ str
Extract scan mode from the header of filter string

Parameters h – header or filter string

Returns Scan type (e.g. p = profile, c = centroid)

dimspy.metadata.ms_type_from_header(h: str)→ str
Extract the ms type from header or filter string

Parameters h – header or filter string

12 Chapter 1. Contents

DIMSPy, Release 2.0.0

Returns ms type (e.g. FTMS and ITMS)

dimspy.metadata.mz_range_from_header(h: str)→ Sequence[float]
Extract m/z range from header or filter string

Parameters h – Header or filter string

Returns m/z range

dimspy.metadata.scan_type_from_header(h: str)→ str
Extract the scan type from the header of filter string

Parameters h – header or filter string

Returns Scan type (e.g. full or sim)

dimspy.metadata.to_int(x)

Parameters x – Value to convert to int

Returns Value as int (or False if conversion not possible)

dimspy.metadata.update_labels(pm: dimspy.models.peak_matrix.PeakMatrix, fn_tsv: str)→ dim-
spy.models.peak_matrix.PeakMatrix

Update Sample labels PeakMatrix object :param pm: peakMatrix Object :param fn_tsv: Path to tab-separated
file :return: peakMatrix Object

dimspy.metadata.update_metadata_and_labels(peaklists: Se-
quence[dimspy.models.peaklist.PeakList],
fl: Dict)

Update metadata

Parameters

• peaklists – List of peaklist Objects

• fl – Dictionary with meta data

Returns List of peaklist objects

dimspy.metadata.validate_metadata(fn_tsv: str)→ collections.OrderedDict
Check and validate metadata within a tab-separated file

Parameters fn_tsv – Path to tab-separated file

Returns Dictionary

1.2.3 models

peaklist

class dimspy.models.peaklist.PeakList(ID: str, mz: Sequence[float], intensity: Se-
quence[float], **metadata)

Bases: object

The PeakList class.

Stores mass spectrometry peaks list data. It requires an ID, mz values, and intensities. It can store extra peak
attributes e.g. SNRs, and peaklist tags and metadata. It utilises the automatically managed flags to “remove” or
“retain” peaks without actually delete them. Therefore the filterings on the peaks are traceable.

Parameters

• ID – The ID of the peaklist data, unique string or integer value is recommended

1.2. API reference 13

DIMSPy, Release 2.0.0

• mz – Mz values of all the peaks. Must in the ascending order

• intensity – Intensities of all the peaks. Must have the same size as mz

• kwargs – Key-value pairs of the peaklist metadata

>>> mz_values = np.random.uniform(100, 1200, size = 100)
>>> int_values = np.random.normal(60, 10, size = 100)
>>> peaks = PeakList('dummy', mz_values, int_values, description = 'a dummy
→˓peaklist')

Internally the peaklist data is stored by using numpy structured array namely the attribute talbe (this may change
in the future):

mz intensity snr snr_flag . . . flags*
102.5 21.7 10.5 True . . . True
111.7 12.3 5.1 False False
126.3 98.1 31.7 True True
133.1 68.9 12.6 True True
. . .

Each column is called an attribute. The first two attributes are fixed as “mz” and “intensity”. They cannot be
added or removed as the others. The last “attribute” is the “flags”, which is fact stored separately. The “flags”
column is calculated automatically according to all the manually set flag attributes, e.g., the “snr_flag”. It can
only be changed by the class itself. The unflagged peaks are considered as “removed”. They are kept internally
mainly for visualization and tracing purposes.

Warning: Removing a flag attribute may change the “flags” column, and cause the unflagged peaks to be
flagged again. As most the processes are applied only on the flagged peaks, these peaks, if the others have
gone through such process, may have incorrect values.

In principle, setting a flag attribute should be considered as an irreversible process.

property ID
Property of the peaklist ID.

Getter Returns the peaklist ID

Setter Set the peaklist ID

Type Same as input ID

add_attribute(attr_name: str, attr_value: Sequence, attr_dtype: Union[Type, str, None] = None,
is_flag: bool = False, on_index: Optional[int] = None, flagged_only: bool = True,
invalid_value=nan)

Adds an new attribute to the PeakList attribute table.

Parameters

• attr_name – The name of the new attribute, must be a string

• attr_value – The values of the new attribute. It’s size must equals to PeakList.size (if
flagged_only == True), or PeakList.full_size (if flagged_only == False)

• attr_dtype – The data type of the new attribute. If it is set to None, the PeakList
will try to detect the data type based on attr_value. If the detection failed it will take the
“object” type. Default = None

14 Chapter 1. Contents

DIMSPy, Release 2.0.0

• is_flag – Whether the new attribute is a flag attribute, i.e., will be used in flags calcu-
lation. Default = False

• on_index – Insert the new attribute on a specific column. It can’t be 0 or 1, as the first
two attributes are fixed as mz and intensity. Setting to None means to put it to the last
column. Default = None

• flagged_only – Whether the attr_value is set to the flagged peaks or all peaks. Default
= True

• invalid_value – If flagged_only is set to True, this value will be assigned to the
unflagged peaks. The actual value depends on the attribute data type. For instance, on a
boolean attribute invalid_value = 0 will be converted to False. Default = numpy.nan

Return type PeakList object (self)

property attributes
Property of the attribute names.

Getter Returns a tuple of the attribute names

Type tuple

calculate_flags()
Re-calculates the flags according to the flag attributes.

Return type numpy array

Note: This method will be called automatically every time a flag attribute is added, removed, or changed.

cleanup_unflagged_peaks(flag_name: Optional[str] = None)
Remove unflagged peaks.

Parameters flag_name – Remove peaks unflagged by this flag attribute. Setting None means
to remove peaks unflagged by the overall flags. Default = None

Return type PeakList object (self)

>>> print(peaks)
mz, intensity, intensity_flag, snr, snr_flag, flags
10, 70, True, 10, False, False
20, 60, True, 20, True, True
30, 50, False, 30, True, False
40, 40, False, 40, True, False
>>> print(peaks.cleanup_unflagged_peaks('snr_flag'))
mz, intensity, intensity_flag, snr, snr_flag, flags
20, 60, True, 20, True, True
30, 50, False, 30, True, False
40, 40, False, 40, True, False
>>> print(peaks.cleanup_unflagged_peaks())
mz, intensity, intensity_flag, snr, snr_flag, flags
20, 60, True, 20, True, True

copy()
Returns a deep copy of the peaklist.

Return type PeakList object

drop_attribute(attr_name: str)
Drops an existing attribute.

1.2. API reference 15

DIMSPy, Release 2.0.0

Parameters attr_name – The attribute name to drop. It cannot be mz, intensity, or flags

Return type PeakList object (self)

property dtable
Property of the overall attribute table.

Getter Returns the original attribute table

Type numpy structured array

Warning: This property directly accesses the internal attribute table. Be careful when manipulating
the data, particularly pay attention to the potential side-effects.

property flag_attributes
Property of the flag attribute names.

Getter Returns a tuple of the flag attribute names

Type tuple

property flags
Property of the flags.

Getter Returns a deep copy of the flags array

Type numpy array

property full_shape
Property of the peaklist full attributes table shape.

Getter Returns the full attibutes table shape, including the unflagged peaks

Type tuple

property full_size
Property of the peaklist full size.

Getter Returns the full peaklist size, i.e., including the unflagged peaks

Type int

get_attribute(attr_name: str, flagged_only: bool = True)
Gets values of an existing attribute.

Parameters

• attr_name – The attribute to get values

• flagged_only – Whether to return the values of flagged peaks or all peaks. Default =
True

Return type numpy array

get_peak(peak_index: Union[int, Sequence[int]], flagged_only: bool = True)
Gets values of a peak.

Parameters

• peak_index – The index of the peak to get values

• flagged_only – Whether the values are taken from the index of flagged peaks or all
peaks. Default = True

Return type numpy array

16 Chapter 1. Contents

DIMSPy, Release 2.0.0

has_attribute(attr_name: str)
Checks whether there exists an attribute in the table.

Parameters attr_name – The attribute name for checking

Return type bool

insert_peak(peak_value: Sequence)
Insert a new peak.

Parameters peak_value – The values of the new peak. Must contain values for all the at-
tributes. It’s position depends on the mz value, i.e., the 1st value of the input

Return type PeakList object (self)

property metadata
Property of the peaklist metadata.

Getter Returns an access interface to the peaklist metadata object

Type PeakList_Metadata object

property peaks
Property of the attribute table.

Getter Returns a deep copy of the flagged attribute table

Type numpy structured array

remove_peak(peak_index: Union[int, Sequence[int]], flagged_only: bool = True)
Remove an existing peak.

Parameters

• peak_index – The index of the peak to remove

• flagged_only – Whether the index is for flagged peaks or all peaks. Default = True

Return type PeakList object (self)

set_attribute(attr_name: str, attr_value: Sequence, flagged_only: bool = True, unsorted_mz: bool
= False)

Sets values to an existing attribute.

Parameters

• attr_name – The attribute to set values

• attr_value – The new attribute values, It’s size must equals to PeakList.size (if
flagged_only == True), or PeakList.full_size (if flagged_only == False)

• flagged_only – Whether the attr_value is set to the flagged peaks or all peaks. Default
= True

• unsorted_mz – Whether the attr_value contains unsorted mz values. This parameter is
valid only when attr_name == “mz”. Default = False

Return type PeakList object (self)

set_peak(peak_index: int, peak_value: Sequence, flagged_only: bool = True)
Sets values to a peak.

Parameters

• peak_index – The index of the peak to set values

• peak_value – The new peak values. Must contain values for all the attributes (not
including flags)

1.2. API reference 17

DIMSPy, Release 2.0.0

• flagged_only – Whether the peak_value is set to the index of flagged peaks or all
peaks. Default = True

Return type PeakList object (self)

>>> print(peaks)
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
30, 30, 30, False
40, 40, 40, True
>>> print(peaks.set_peak(2, [50, 50, 50], flagged_only = True))
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
30, 30, 30, False
50, 50, 50, True
>>> print(peaks.set_peak(2, [40, 40, 40], flagged_only = False))
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
40, 40, 40, False
50, 50, 50, True

property shape
Property of the peaklist attributes table shape.

Getter Returns the attibutes table shape, i.e., peaks number x attributes number. The “flags”
column does not count

Type tuple

property size
Property of the peaklist size.

Getter Returns the flagged peaklist size

Type int

sort_peaks_order()
Sorts peaklist mz values into ascending order.

Note: This method will be called automatically every time the mz values are changed.

property tags
Property of the peaklist tags.

Getter Returns an access interface to the peaklist tags object

Type PeakList_Tags object

to_df()
Exports peaklist attribute table to Pandas DataFrame, including the flags.

Return type pd.DataFrame

to_dict(dict_type: Callable[[Sequence], Mapping] = <class 'collections.OrderedDict'>)→ Mapping
Exports peaklist attribute table to a dictionary (mappable object), including the flags.

Parameters dict_type – Result dictionary type, Default = OrderedDict

Return type list

18 Chapter 1. Contents

DIMSPy, Release 2.0.0

to_list()
Exports peaklist attribute table to a list, including the flags.

Return type list

to_str(delimiter: str = ', ')
Exports peaklist attribute table to a string, including the flags. It can also be used inexplicitly.

Return type str

peaklist_metadata

class dimspy.models.peaklist_metadata.PeakList_Metadata
Bases: dict

The PeakList_Metadata class.

Dictionary-like container for PeakList metadata storage.

Parameters

• args – Iterable object of key-value pairs

• kwargs – Metadata key-value pairs

>>> PeakList_Metadata([('name', 'sample_1'), ('qc', False)])
>>> PeakList_Metadata(name = 'sample_1', qc = False)

metadata attributes can be accessed in both dictionary-like and property-like manners.

>>> meta = PeakList_Metadata(name = 'sample_1', qc = False)
>>> meta['name']
sample_1
>>> meta.qc
False
>>> del meta.qc
>>> meta.has_key('qc')
False

Warning: The __getattr__, __setattr__, and __delattr__ methods are overrided. DO NOT assign a meta-
data object to another metadata object, e.g., metadata.metadata.attr = value.

peaklist_tags

class dimspy.models.peaklist_tags.PeakList_Tags(*args, **kwargs)
Bases: object

The PeakList_Tags class.

Container for both typed and untyped tags. This class is mainly used in PeakList and PeakMatrix classes for
sample filtering. For a PeakList the tag types must be unique, but not the tag values (unless they are untyped).
For instance, PeakList can have tags batch = 1 and plate = 1, but not batch = 1 and batch = 2, or (untyped) 1 and
(untyped) 1. Single value will be treated as untyped tag.

Parameters

• args – List of untyped tags

1.2. API reference 19

DIMSPy, Release 2.0.0

• kwargs – List of typed tags. Only one tag value can be assigned to a specific tag type

>>> PeakList_Tags('untyped_tag1', Tag('untyped_tag2'), Tag('typed_tag', 'tag_type
→˓'))
>>> PeakList_Tags(tag_type1 = 'tag_value1', tag_type2 = 'tag_value2')

add_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] = None)
Adds typed or untyped tag.

Parameters

• tag – Tag or tag value to add

• tag_type – Type of the tag value

>>> tags = PeakList_Tags()
>>> tags.add_tag('untyped_tag1')
>>> tags.add_tag(Tag('typed_tag1', 'tag_type1'))
>>> tags.add_tag(tag_type2 = 'typed_tag2')

drop_all_tags()
Drops all tags, both typed and untyped.

drop_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] =
None)

Drops typed and untyped tag.

Parameters

• tag – Tag or tag value to drop

• tag_type – Type of the tag value

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> tags.drop_tag(Tag('tag_value1', 'tag_type1'))
>>> print(tags)
untyped_tag1

drop_tag_type(tag_type: Optional[str] = None)
Drops the tag with the given type.

Parameters tag_type – Tag type to drop, None (untyped) may drop multiple tags

has_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] = None)
Checks whether there exists a specific tag.

Parameters

• tag – The tag for checking

• tag_type – The type of the tag

Return type bool

>>> tags = PeakList_Tags('untyped_tag1', Tag('tag_value1', 'tag_type1'))
>>> tags.has_tag('untyped_tag1')
True
>>> tags.has_tag('typed_tag1')
False
>>> tags.has_tag(Tag('tag_value1', 'tag_type1'))
True
>>> tags.has_tag('tag_value1', 'tag_type1')
True

20 Chapter 1. Contents

DIMSPy, Release 2.0.0

has_tag_type(tag_type: Optional[str] = None)
Checks whether there exists a specific tag type.

Parameters tag_type – The tag type for checking, None indicates untyped tags

Return type bool

tag_of(tag_type: Optional[str] = None)
Returns tag value of the given tag type, or tuple of untyped tags if tag_type is None.

Parameters tag_type – Valid tag type, None for untyped tags

Return type Tag, or None if tag_type not exists

property tag_types
Property of included tag types. None indicates untyped tags included.

Getter Returns a set containing all the tag types of the typed tags

Type set

property tag_values
Property of included tag values. Same tag values will be merged

Getter Returns a set containing all the tag values, both typed and untyped tags

Type set

property tags
Property of all included tags.

Getter Returns a tuple containing all the tags, both typed and untyped

Type tuple

to_list()
Exports tags to a list. Each element is a tuple of (tag value, tag type).

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> tags.to_list()
[('untyped_tag1', None), ('tag_value1', 'tag_type1')]

Return type list

to_str()
Exports tags to a string. It can also be used inexplicitly as

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> print(tags)
untyped_tag1, tag_type1:tag_value1

Return type str

property typed_tags
Property of included typed tags.

Getter Returns a tuple containing all the typed tags

Type tuple

property untyped_tags
Property of included untyped tags.

1.2. API reference 21

DIMSPy, Release 2.0.0

Getter Returns a tuple containing all the untyped tags

Type tuple

class dimspy.models.peaklist_tags.Tag(value: Union[int, float, str, dim-
spy.models.peaklist_tags.Tag], ttype: Optional[str] =
None)

Bases: object

The Tag class.

This class is mainly used in PeakList and PeakMatrix classes for sample filtering.

Parameters

• value – Tag value, must be number (int, float), string (ascii, unicode), or Tag object (ignore
ttype setting)

• ttype – Tag type, must be string or None (untyped), default = None

Single value will be treated as untyped tag:

>>> tag = Tag(1)
>>> tag == 1
True
>>> tag = Tag(1, 'batch')
>>> tag == 1
False

property ttype
Property of tag type. None indicates untyped tag.

Getter Returns the type of the tag

Setter Set the tag type, must be None or string

Type None, str, unicode

property typed
Property to decide if the tag is typed or untyped.

Getter Returns typed status of the tag

Type bool

property value
Property of tag value.

Getter Returns the value of the tag

Setter Set the tag value, must be number or string

Type int, float, str, unicode

22 Chapter 1. Contents

DIMSPy, Release 2.0.0

peak_matrix

class dimspy.models.peak_matrix.PeakMatrix(peaklist_ids: Sequence[str], peaklist_tags: Se-
quence[dimspy.models.peaklist_tags.PeakList_Tags],
peaklist_attributes: Sequence[Tuple[str,
Any]])

Bases: object

The PeakMatrix class.

Stores aligned mass spectrometry peaks matrix data. It requires IDs, tags, and attributes from the source peak
lists. It uses tags based mask to “hide” the unrelated samples for convenient processing. It utilises the automat-
ically managed flags to “remove” peaks without actually delete them. Therefore the filterings on the peaks are
traceable. Normally, PeakMatrix object is created by functions e.g. align_peaks() rather than manual.

Parameters

• peaklist_ids – The IDs of the source peak lists

• peaklist_tags – The tags (PeakList_Tags) of the source peak lists

• peaklist_attributes – The attributes of the source peak lists. Must be a list or tuple
in the format of [(attr_name, attr_matrix), . . .], where attr_name is name of the attribute,
and attr_matrix is the vertically stacked arrtibute values in the shape of samples x peaks.
The order of the attributes will be kept in the PeakMatrix. The first two attributes must be
“mz” and “intensity”.

>>> pids = [pl.ID for pl in peaklists]
>>> tags = [pl.tags for pl in peaklists]
>>> attrs = [(attr_name, np.vstack([pl[attr_name] for pl in peaklists]))
→˓ for attr_name in peaklists[0].attributes]
>>> pm = PeakMatrix(pids, tags, attrs)

Internally the attribute data is stored in OrderedDict as a list of matrix. An attribute matrix can be illustrated
as follows, in which the mask and flags are the same for all attributes. The final row “flags” is automatically
calculated based on the manually added flags. It decides which peaks are “removed” i.e. unflagged. Particularly,
the “–” indicates no peak in that sample can be aligned into the mz value.

attribute: “mz”

mask peak_1 peak_2 peak_3 . . .
False 12.7 14.9 21.0 . . .
True – 15.1 21.1
False 12.1 14.7 –
False 12.9 14.8 20.9
. . .
flag_1 True False True . . .
flag_2 True True False
flags* True False False

Warning: Removing a flag may change the overall “flags”, and cause the unflagged peaks to be flagged
again. As most the processes are applied only on the flagged peaks, these peaks, if the others have gone
through such process, may have incorrect values.

In principle, setting a flag attribute should be considered as an irreversible process.

1.2. API reference 23

DIMSPy, Release 2.0.0

Different from the flags, mask should be considered as a more temporary way to hide the unrelated samples.
A masked sample (row) will not be used for processing, but its data is still in the attribute matrix. For this
reason, the mask_peakmatrix, unmask_peakmatrix, and unmask_all_peakmatrix statements are provided as a
more flexible way to set / unset the mask.

add_flag(flag_name: str, flag_values: Sequence[bool], flagged_only: bool = True)
Adds a flag to the peak matrix peaks.

Parameters

• flag_name – name of the flag, it must be unique and not equal to “flags”

• flag_values – values of the flag. It must have a length of pm.shape[1] if flagged_only
= True, or pm.full_shape[1] if flagged_only = False

• flagged_only – whether to set the flagged peaks only. Default = True, and the values
of the unflagged peaks are set to False

The overall flags property will be automatically recalculated.

attr_matrix(attr_name: str, flagged_only: bool = True)
Obtains an existing attribute matrix.

Parameters

• attr_name – name of the target attribute

• flagged_only – whether to return the flagged values only. Default = True

Return type numpy array

attr_mean_vector(attr_name: str, flagged_only: bool = True)
Obtains the mean array of an existing attribute matrix.

Parameters

• attr_name – name of the target attribute

• flagged_only – whether to return the mean array of the flagged values only. Default
= True

Return type numpy array

Noting that only the “present” peaks will be used for mean values calculation. If the attribute matrix has a
string / unicode data type, the values in each column will be concatenated.

property attributes
Property of the attribute names.

Getter returns a tuple including the names of the attribute matrix

Type tuple

drop_flag(flag_name: str)
Drops a existing flag from the peak matrix.

Parameters flag_name – name of the flag to drop. It must exist and not equal to “flags”

The overall flags property will be automatically recalculated.

extract_peaklist(peaklist_id: str)
Extracts one peaklist from the peak matrix.

Parameters peaklist_id – ID of the peaklist to extract

Return type PeakList object

24 Chapter 1. Contents

DIMSPy, Release 2.0.0

Only the “present” peaks will be included in the result peaklist.

extract_peaklists()
Extracts all peaklists from the peak matrix.

Return type list

property flag_names
Property of the flag names.

Getter returns a tuple including the names of the manually set flags

Type tuple

flag_values(flag_name: str)
Obtains values of an existing flag.

Parameters flag_name – name of the target flag. It must exist and not equal to “flags”

Return type numpy array

property flags
Property of the flags.

Getter returns a deep copy of the flags array

Type numpy array

property fraction
Property of the fraction array.

Getter returns the fraction array, indicating the ratio of present peaks on each mz value

Type numpy array

>>> print pm.present
array([3, 4, 2, 3, 3])
>>> print pm.shape[0]
4
>>> print pm.fraction
array([0.75, 1.0, 0.5, 0.75, 0.75])

property full_shape
Property of the peak matrix full shape.

Getter returns the full shape of the attribute matrix, i.e., ignore mask and flags

Type tuple

property intensity_matrix
Property of the intensity matrix.

Getter returns the intensity attribute matrix, unmasked and flagged values only

Type numpy array

property intensity_mean_vector
Property of the intensity mean values array.

Getter returns the mean values array of the intensity attribute matrix, unmasked and flagged
values only

Type numpy array

is_empty()
Checks whether the peak matrix is empty under the current mask and flags.

1.2. API reference 25

DIMSPy, Release 2.0.0

Return type bool

property mask
Property of the mask.

Getter returns a deep copy of the mask array

Setter sets the mask array. Provide None to unmask all samples

Type numpy array

mask_tags(*args, **kwargs)
Masks samples with particular tags.

Parameters

• args – tags or untyped tag values for masking

• kwargs – typed tags for masking

• override – whether to override the current mask, default = False

Return type PeakMatrix object (self)

This function will mask samples with ALL the tags. To match ANY of the tags, use cascade form instead.

>>> pm.mask_tags('qc', plate = 1)
(will mask all QC samples on plate 1)
>>> pm.mask_tags('qc').mask_tags(plate = 1)
(will mask QC samples and all samples on plate 1)

property missing_values
Property of the missing values array.

Getter returns the missing values array, indicating the number of unaligned peaks on each sam-
ple

Type numpy array

>>> print pm.present_matrix
array([[True, True, True, True, False],

[True, True, False, False, True],
[True, True, True, True, True],
[False, True, False, True, True],])

>>> print pm.missing_values
array([1, 2, 0, 2])

property mz_matrix
Property of the mz matrix.

Getter returns the mz attribute matrix, unmasked and flagged values only

Type numpy array

property mz_mean_vector
Property of the mz mean values array.

Getter returns the mean values array of the mz attribute matrix, unmasked and flagged values
only

Type numpy array

property occurrence
Property of the occurrence array.

26 Chapter 1. Contents

DIMSPy, Release 2.0.0

Getter returns the occurrence array, indicating the total number of peaks (including peaks in
the same sample) aliged in each mz value. This property is valid only when the intra_count
attribute matrix is available

Type numpy array

>>> print pm.attr_matrix('intra_count')
array([[2, 1, 1, 1, 0],

[1, 1, 0, 0, 1],
[1, 3, 1, 2, 1],
[0, 1, 0, 1, 1],])

>>> print pm.occurrence
array([4, 6, 2, 4, 3])

property peaklist_ids
Property of the source peaklist IDs.

Getter returns a tuple including the IDs of the source peaklists

Type tuple

property peaklist_tag_types
Property of the source peaklist tag types.

Getter returns a tuple including the types of the typed tags of the source peaklists

Type set

property peaklist_tag_values
Property of the source peaklist tag values.

Getter returns a tuple including the values of the source peaklists tags, both typed and untyped

Type set

property peaklist_tags
Property of the source peaklist tags.

Getter returns a tuple including the Peaklist_Tags objects of the source peaklists

Type tuple

property present
Property of the present array.

Getter returns the present array, indicating how many peaks are aligned in each mz value

Type numpy array

property present_matrix
Property of the present matrix.

Getter returns the present matrix, indicating whether a sample has peak(s) aligned in each mz
value

Type numpy array

>>> print pm.present_matrix
array([[True, True, True, True, False],

[True, True, False, False, True],
[True, True, True, True, True],
[False, True, False, True, True],])

>>> print pm.present
array([3, 4, 2, 3, 3])

1.2. API reference 27

DIMSPy, Release 2.0.0

property(prop_name: str, flagged_only: bool = True)
Obtains an existing attribute matrix.

Parameters

• prop_name – name of the target property. Valid properties include ‘present’,
‘present_matrix’, ‘fraction’, ‘missing_values’, ‘occurrence’, and ‘purity’

• flagged_only – whether to return the flagged values only. Default = True

Return type numpy array

property purity
Property of the purity level array.

Getter returns the purity array, indicating the ratio of only one peak in each sample being aligned
in each mz value. This property is valid only when the intra_count attribute matrix is avail-
able

Type numpy array

>>> print pm.attr_matrix('intra_count')
array([[2, 1, 1, 1, 0],

[1, 1, 0, 0, 1],
[1, 3, 1, 2, 1],
[0, 1, 0, 1, 1],])

>>> print pm.purity
array([0.667, 0.75, 1.0, 0.667, 1.0])

remove_empty_peaks()
Removes empty peaks from the peak matrix.

Empty peaks are peaks with not valid m/z or intensity value over the samples. They may occur after
removing an entire sample from the peak matrix, e.g., remove the blank samples in the blank filter.

Return type PeakMatrix object (self)

remove_peaks(peak_ids, flagged_only: bool = True)
Removes peaks from the peak matrix.

Parameters

• peak_ids – the indices of the peaks to remove

• flagged_only – whether the indices are for flagged peaks or all peaks. Default = True

Return type PeakMatrix object (self)

remove_samples(sample_ids, masked_only: bool = True)
Removes samples from the peak matrix.

Parameters

• sample_ids – the indices of the samples to remove

• masked_only – whether the indices are for unmasked samples or all samples. Default
= True

Return type PeakMatrix object (self)

rsd(*args, **kwargs)
Calculates relative standard deviation (RSD) array.

Parameters

28 Chapter 1. Contents

DIMSPy, Release 2.0.0

• args – tags or untyped tag values for RSD calculation, no value = calculate over all
samples

• kwargs – typed tags for RSD calculation, no value = calculate over all samples

• on_attr – calculate RSD on given attribute. Default = “intensity”

• flagged_only – whether to calculate on flagged peaks only. Default = True

Type numpy array

The RSD is calculated as:

>>> rsd = std(pm.intensity_matrix, axis = 0, ddof = 1) / mean(pm.intensity_
→˓matrix, axis = 0) * 100

Noting that the means delta degrees of freedom (ddof) is set to 1 for standard deviation calculation. More-
over, only the “present” peaks will be used for calculation. If a column has less than 2 peaks, the corre-
sponding rsd value will be set to np.nan.

property shape
Property of the peak matrix shape.

Getter returns the shape of the attribute matrix

Type tuple

tags_of(tag_type: Optional[str] = None)
Obtains tags of the peaklist_tags with particular tag type.

Parameters tag_type – the type of the returning tags. Provide None to obtain untyped tags

Return type tuple

to_peaklist(ID: str)
Averages the peak matrix into a single peaklist.

Parameters ID – ID of the merged peaklist

Return type PeakList object

Only the “present” peaks will be included in the result peaklist. The new peaklist will only contain the
following attributes: mz, intensity, present, fraction, rsd, occurence, and purity.

Use unmask statement to calculate the peaklist for a particular group of samples:

>>> with unmask_peakmatrix(pm, 'Sample') as m: pkl = m.to_peaklist('averaged_
→˓peaklist')

Or use mask statement to exclude a particular group of samples:

>>> with mask_peakmatrix(pm, 'QC') as m: pkl = m.to_peaklist('averaged_
→˓peaklist')

to_str(attr_name: str = 'intensity', delimiter: str = '\t', samples_in_rows: bool = True, comprehensive:
bool = True, rsd_tags: Sequence = ())

Exports the peak matrix to a string.

Parameters

• attr_name – name of the attribute matrix for exporting. Default = ‘intensity’

• delimiter – delimiter to separate the matrix. Default = ‘ ‘, i.e., TSV format

• samples_in_rows – whether or not the samples are stored in rows. Default = True

1.2. API reference 29

DIMSPy, Release 2.0.0

• comprehensive – whether to include comprehensive info, e.g., mask, flags, present,
rsd etc. Default = True

• rsd_tags – peaklist tags for RSD calculation. Default = (), indicating only the overall
RSD is included

Return type str

unmask_tags(*args, **kwargs)
Unmasks samples with particular tags.

Parameters

• args – tags or untyped tag values for unmasking

• kwargs – typed tags for unmasking

• override – whether to override the current mask, default = False

Return type PeakMatrix object (self)

This function will unmask samples with ALL the tags. To unmask ANY of the tags, use cascade form
instead.

>>> pm.mask = [True] * pm.full_shape[0]
>>> pm.unmask_tags('qc', plate = 1)
(will unmask all QC samples on plate 1)
>>> pm.unmask_tags('qc').unmask_tags(plate = 1)
(will unmask QC samples and all samples on plate 1)

class dimspy.models.peak_matrix.mask_all_peakmatrix(pm: dim-
spy.models.peak_matrix.PeakMatrix)

Bases: object

The mask_all_peakmatrix statement.

Temporary mask all the peak matrix samples. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

Parameters pm – the target peak matrix

Return type PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with mask_all_peakmatrix(pm) as m: print m.peaklist_ids
()
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

class dimspy.models.peak_matrix.mask_peakmatrix(pm: dim-
spy.models.peak_matrix.PeakMatrix,
*args, **kwargs)

Bases: object

The mask_peakmatrix statement.

Temporary mask the peak matrix with particular tags. Within the statement the samples can be motified or
removed. After leaving the statement the original mask will be recoverd.

Parameters

• pm – the target peak matrix

• override – whether to override the current mask, default = True

30 Chapter 1. Contents

DIMSPy, Release 2.0.0

• args – target tag values, both typed and untyped

• kwargs – target typed tag types and values

Return type PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with mask_peakmatrix(pm., 'qc') as m: print m.peaklist_ids
('sample_1', 'sample_2', 'sample_3', 'sample_4')
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

class dimspy.models.peak_matrix.unmask_all_peakmatrix(pm: dim-
spy.models.peak_matrix.PeakMatrix)

Bases: object

The unmask_all_peakmatrix statement.

Temporary unmask all the peak matrix samples. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

Parameters pm – the target peak matrix

Return type PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with unmask_all_peakmatrix(pm) as m: print m.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

class dimspy.models.peak_matrix.unmask_peakmatrix(pm: dim-
spy.models.peak_matrix.PeakMatrix,
*args, **kwargs)

Bases: object

The unmask_peakmatrix statement.

Temporary unmask the peak matrix with particular tags. Within the statement the samples can be motified or
removed. After leaving the statement the original mask will be recoverd.

Parameters

• pm – the target peak matrix

• override – whether to override the current mask, default = True

• args – target tag values, both typed and untyped

• kwargs – target typed tag types and values

Return type PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with unmask_peakmatrix(pm, 'qc') as m: print m.peaklist_ids
('qc_1', 'qc_2') # no need to set pm.mask to True
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

1.2. API reference 31

DIMSPy, Release 2.0.0

1.2.4 portals

mzml_portal

class dimspy.portals.mzml_portal.Mzml(filename: Union[str, _io.BytesIO], **kwargs)
Bases: object

mzML portal

headers()→ collections.OrderedDict
Get all unique header or filter strings and associated scan ids. :return: Dictionary

scan_ids()→ collections.OrderedDict
Get all scan ids and associated headers or filter strings. :return: Dictionary

peaklist(scan_id, function_noise='median')→ dimspy.models.peaklist.PeakList
Create a peaklist object for a specific scan id. :param scan_id: Scan id :param function_noise: Function to
calculate the noise from each scan. The following options are available:

• median - the median of all peak intensities within a given scan is used as the noise value.

• mean - the unweighted mean average of all peak intensities within a given scan is used as the noise
value.

• mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences
between peak intensities and the mean peak intensity (calculated across all peak intensities within a
given scan).

Returns PeakList object

peaklists(scan_ids, function_noise='median')→ Sequence[dimspy.models.peaklist.PeakList]
Create a list of peaklist objects for each scan id in the list. :param scan_ids: List of scan ids

Parameters function_noise – Function to calculate the noise from each scan. The follow-
ing options are available:

• median - the median of all peak intensities within a given scan is used as the noise value.

• mean - the unweighted mean average of all peak intensities within a given scan is used as the noise
value.

• mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences
between peak intensities and the mean peak intensity (calculated across all peak intensities within a
given scan).

• noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo
Fisher Scientific’s msFileReader library. This option should only be applied when you are processing
.RAW files.

Returns List of PeakList objects

tics()→ collections.OrderedDict
Get all TIC values and associated scan ids :return: Dictionary

ion_injection_times()→ collections.OrderedDict
Get all ion injection time values and associated scan ids :return: Dictionary

scan_dependents()→ list
Get a nested list of scan id pairs. Each pair represents a fragementation event. :return: List

32 Chapter 1. Contents

DIMSPy, Release 2.0.0

close()
Close the reader/file object :return: None

thermo_raw_portal

dimspy.portals.thermo_raw_portal.mz_range_from_header(h: str)→ list
Extract the m/z range from a header or filterstring

Parameters h – str

Returns Sequence[float, float]

class dimspy.portals.thermo_raw_portal.ThermoRaw(filename)
Bases: object

ThermoRaw portal

headers()→ collections.OrderedDict
Get all unique header or filter strings and associated scan ids. :return: Dictionary

scan_ids()→ collections.OrderedDict
Get all scan ids and associated headers or filter strings. :return: Dictionary

peaklist(scan_id, function_noise='noise_packets')→ dimspy.models.peaklist.PeakList
Create a peaklist object for a specific scan id. :param scan_id: Scan id :param function_noise: Function to
calculate the noise from each scan. The following options are available:

• median - the median of all peak intensities within a given scan is used as the noise value.

• mean - the unweighted mean average of all peak intensities within a given scan is used as the noise
value.

• mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences
between peak intensities and the mean peak intensity (calculated across all peak intensities within a
given scan).

• noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo
Fisher Scientific’s msFileReader library. This option should only be applied when you are processing
.RAW files.

Returns PeakList object

peaklists(scan_ids, function_noise='noise_packets')→ Sequence[dimspy.models.peaklist.PeakList]
Create a list of peaklist objects for each scan id in the list. :param scan_ids: List of scan ids

Parameters function_noise – Function to calculate the noise from each scan. The follow-
ing options are available:

• median - the median of all peak intensities within a given scan is used as the noise value.

• mean - the unweighted mean average of all peak intensities within a given scan is used as the noise
value.

• mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences
between peak intensities and the mean peak intensity (calculated across all peak intensities within a
given scan).

• noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo
Fisher Scientific’s msFileReader library. This option should only be applied when you are processing
.RAW files.

1.2. API reference 33

DIMSPy, Release 2.0.0

Returns List of PeakList objects

tics()→ collections.OrderedDict
Get all TIC values and associated scan ids :return: Dictionary

ion_injection_times()→ collections.OrderedDict
Get all TIC values and associated scan ids :return: Dictionary

scan_dependents()→ list
Get a nested list of scan id pairs. Each pair represents a fragementation event. :return: List

close()
Close the reader/file object :return: None

txt_portal

dimspy.portals.txt_portal.save_peaklist_as_txt(pkl: dimspy.models.peaklist.PeakList,
filename: str, *args, **kwargs)

Saves a peaklist object to a plain text file.

Parameters

• pkl – the target peaklist object

• filename – path to a new text file

• args – arguments to be passed to PeakList.to_str

• kwargs – keyword arguments to be passed to PeakList.to_str

dimspy.portals.txt_portal.load_peaklist_from_txt(filename: str, ID: any, delimiter:
str = ', ', flag_names: str = 'auto',
has_flag_col: bool = True)

Loads a peaklist from plain text file.

Parameters

• filename – Path to an exiting text-based peaklist file

• ID – ID of the peaklist

• delimiter – Delimiter of the text lines. Default = ‘,’, i.e., CSV format

• flag_names – Names of the flag attributes. Default = ‘auto’, indicating all the attribute
names ends with “_flag” will be treated as flag attibute. Provide None to indicate no flag
attributes

• has_flag_col – Whether the text file contains the overall “flags” column. If True, it’s
values will be discarded. The overall flags of the new peaklist will be calculated automati-
cally. Default = True

Return type PeakList object

dimspy.portals.txt_portal.save_peak_matrix_as_txt(pm: dim-
spy.models.peak_matrix.PeakMatrix,
filename: str, *args, **kwargs)

Saves a peak matrix in plain text file.

Parameters

• pm – The target peak matrix object

• filename – Path to a new text file

34 Chapter 1. Contents

DIMSPy, Release 2.0.0

• args – Arguments to be passed to PeakMatrix.to_str

• kwargs – Keyword arguments to be passed to PeakMatrix.to_str

dimspy.portals.txt_portal.load_peak_matrix_from_txt(filename: str, delimiter: str = '\t',
samples_in_rows: bool = True,
comprehensive: str = 'auto')

Loads a peak matrix from plain text file.

Parameters

• filename – Path to an exiting text-based peak matrix file

• delimiter – Delimiter of the text lines. Default = ‘ ‘, i.e., TSV format

• samples_in_rows – Whether or not the samples are stored in rows. Default = True

• comprehensive – Whether the input is a ‘comprehensive’ or ‘simple’ version of the
matrix. Default = ‘auto’, i.e., auto detect

Return type PeakMatrix object

hdf5_portal

dimspy.portals.hdf5_portal.save_peaklists_as_hdf5(pkls: Se-
quence[dimspy.models.peaklist.PeakList],
filename: str, compatibility_mode:
bool = False)

Saves multiple peaklists in a HDF5 file.

Parameters

• pkls – The target list of peaklist objects

• filename – Path to a new HDF5 file

• compatibility_mode – Change mode to read previous DIMSpy v1.* based HDF5 file

To incorporate with different dtypes in the attribute matrix, this portal converts all the arribute values into fix-
length strings for HDF5 data tables storage. The order of the peaklists will be retained.

dimspy.portals.hdf5_portal.load_peaklists_from_hdf5(filename: str, compatibil-
ity_mode: bool = False)

Loads a list of peaklist objects from a HDF5 file.

Parameters

• filename – Path to a HDF5 file

• compatibility_mode – Change mode to read previous DIMSpy v1.* based HDF5 file

Return type Sequence[PeakList]

The values in HDF5 data tables are automatically converted to their original dtypes before loading in the peaklist.

dimspy.portals.hdf5_portal.save_peak_matrix_as_hdf5(pm: dim-
spy.models.peak_matrix.PeakMatrix,
filename: str, compatibil-
ity_mode: bool = False)

Saves a peak matrix object to a HDF5 file.

Parameters

• pm – The target peak matrix object

1.2. API reference 35

DIMSPy, Release 2.0.0

• filename – Path to a new HDF5 file

The order of the attributes and flags will be retained.

dimspy.portals.hdf5_portal.load_peak_matrix_from_hdf5(filename: str, compatibil-
ity_mode: bool = False)

Loads a peak matrix from a HDF5 file.

Parameters filename – Path to an existing HDF5 file

Return type PeakMatrix object

paths

dimspy.portals.paths.sort_ms_files_by_timestamp(ps)
Sort a set directory of .mzml or .raw files

Parameters ps – List of paths

:return List

dimspy.portals.paths.validate_and_sort_paths(source, tsv)
Validate and sort a set (i.e. directory or hdf5 file) of .mzml or .raw files.

Parameters

• tsv – Path to tab-separated file

• source – Path to a Path to the .hdf5 file to read from.

Returns List

1.2.5 process

peak_alignment

dimspy.process.peak_alignment.align_peaks(peaks: Sequence[dimspy.models.peaklist.PeakList],
ppm: float = 2.0, block_size: int = 5000,
fixed_block: bool = True, edge_extend:
Union[int, float] = 10, ncpus: Optional[int] =
None)

Cluster and align peaklists into a peak matrix.

Parameters

• peaks – List of peaklists for alignment

• ppm – The hierarchical clustering cutting height, i.e., ppm range for each aligned mz value.
Default = 2.0

• block_size – number peaks in each centre clustering block. This can be a exact or
approximate number depends on the fixed_block parameter. Default = 5000

• fixed_block – Whether the blocks contain fixed number of peaks. Default = True

• edge_extend – Ppm range for the edge blocks. Default = 10

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using as many
as possible

Return type PeakMatrix object

36 Chapter 1. Contents

DIMSPy, Release 2.0.0

This function uses hierarchical clustering to align the mz values of the input peaklists. The alignment “width” is
decided by the parameter of ppm. Due to a large number of peaks, this function splits them into blocks with fixed
or approximate length, and clusters in a parallel manner on multiple CPUs. When running, the edge blocks are
clustered first to prevent separating the same peak into two adjacent centre blocks. The size of the edge blocks
is decided by edge_extend. The clustering of centre blocks is conducted afterwards.

After merging the clustering results, all the attributes (mz, intensity, snr, etc.) are aligned into matrix accordingly.
If multiple peaks from the same sample are clustered into one mz value, their attributes are averaged (for real
value attributes e.g. mz and intensity) or concatenated (string, unicode, or bool attributes). The flag attributes
are ignored. The number of these overlapping peaks is recorded in a new intra_count attribute matrix.

peak_filters

dimspy.process.peak_filters.filter_attr(pl: dimspy.models.peaklist.PeakList, attr_name:
str, max_threshold: Union[int, float, None] =
None, min_threshold: [<class 'int'>, <class
'float'>, None] = None, flag_name: Optional[str]
= None, flag_index: Optional[int] = None)

Peaklist attribute values filter.

Parameters

• pl – The target peaklist

• attr_name – Name of the target attribute

• max_threshold – Maximum threshold. A peak will be unflagged if the value of it’s
attr_name is larger than the threshold. Default = None, indicating no threshold

• min_threshold – Minimum threshold. A peak will be unflagged if the value of it’s
attr_name is smaller than the threshold. Default = None, indicating no threshold

• flag_name – Name of the new flag attribute. Default = None, indicating using attr_name
+ ‘_flag’

• flag_index – Index of the new flag to be inserted into the peaklist. Default = None

Return type PeakList object

This filter accepts real value attributes only.

1.2. API reference 37

DIMSPy, Release 2.0.0

dimspy.process.peak_filters.filter_ringing(pl: dimspy.models.peaklist.PeakList, thresh-
old: float, bin_size: Union[int, float] = 1.0,
flag_name: str = 'ringing_flag', flag_index:
Optional[int] = None)

Peaklist ringing filter.

Parameters

• pl – The target peaklist

• threshold – Intensity threshold ratio

• bin_size – size of the mz chunk for intensity filtering. Default = 1.0 ppm

• flag_name – Name of the new flag attribute. Default = ‘ringing_flag’

• flag_index – Index of the new flag to be inserted into the peaklist. Default = None

Return type PeakList object

This filter will split the mz values into bin_size chunks, and search the highest intensity value for each chunk.
All other peaks, if it’s intensity is smaller than threshold x the highest intensity in that chunk, will be unflagged.

dimspy.process.peak_filters.filter_mz_ranges(pl: dimspy.models.peaklist.PeakList,
mz_ranges: Sequence[Tuple[float, float]],
flag_name: str = 'mz_ranges_flag',
flagged_only: bool = False, flag_index:
Optional[int] = None)

Peaklist mz range filter.

Parameters

• pl – The target peaklist

• mz_ranges – The mz ranges to remove. Must be in the format of [(mz_min1, mz_max2),
(mz_min2, mz_max2), . . .]

• flag_name – Name of the new flag attribute. Default = ‘mz_range_remove_flag’

• flag_index – Index of the new flag to be inserted into the peaklist. Default = None

Return type PeakList

This filter will remove all the peaks whose mz values are within any of the ranges in the mz_remove_rngs.

dimspy.process.peak_filters.filter_rsd(pm: dimspy.models.peak_matrix.PeakMatrix,
rsd_threshold: Union[int, float], qc_tag: Any,
on_attr: str = 'intensity', flag_name: str =
'rsd_flag')

PeakMatrix RSD filter.

Parameters

• pm – The target peak matrix

• rsd_threshold – Threshold of the RSD of the QC samples

• qc_tag – Tag (label) to unmask qc samples

• on_attr – Calculate RSD on given attribute. Default = “intensity”

• flag_name – Name of the new flag. Default = ‘rsd_flag’

Return type PeakMatrix

This filter will calculate the RSD values of the QC samples. A peak with a QC RSD value larger than the
threshold will be unflagged.

38 Chapter 1. Contents

DIMSPy, Release 2.0.0

dimspy.process.peak_filters.filter_fraction(pm: dimspy.models.peak_matrix.PeakMatrix,
fraction_threshold: float, within_classes:
bool = False, class_tag_type: Any = None,
flag_name: str = 'fraction_flag')

PeakMatrix fraction filter.

Parameters

• pm – The target peak matrix

• fraction_threshold – Threshold of the sample fractions

• within_classes – Whether to calculate the fraction array within each class. Default =
False

• class_tag_type – Tag type to unmask samples within the same class (e.g. “classLa-
bel”). Default = None

• flag_name – Name of the new flag. Default = ‘fraction_flag’

Return type PeakMatrix object

This filter will calculate the fraction array over all samples or within each class (based on class_tag_type). The
peaks with a fraction value smaller than the threshold will be unflagged.

dimspy.process.peak_filters.filter_blank_peaks(pm: dim-
spy.models.peak_matrix.PeakMatrix,
blank_tag: Any, fraction_threshold:
Union[int, float] = 1, fold_threshold:
Union[int, float] = 1, method: str
= 'mean', rm_blanks: bool = True,
flag_name: str = 'blank_flag')

PeakMatrix blank filter.

Parameters

• pm – The target peak matrix

• blank_tag – Tag (label) to mask blank samples. e.g Tag(“blank”, “classLabel”)

• fraction_threshold – Threshold of the sample fractions. Default = 1

• fold_threshold – Threshold of the blank sample intensity folds. Default = 1

• method – Method to calculate blank sample intensity array. Valid values include ‘mean’,
‘median’, and ‘max’. Default = ‘mean’

• rm_blanks – Whether to remove (not mask) blank samples after filtering

• flag_name – Name of the new flag. Default = ‘blank_flag’

Return type PeakMatrix object

This filter will calculate the intensity array of the blanks using the “method”, and compare with the intensities of
the other samples. If fraction_threshold% of the intensity values of a peak are smaller than the blank intensities
x fold_threshold, this peak will be unflagged.

1.2. API reference 39

DIMSPy, Release 2.0.0

scan_processing

dimspy.process.replicate_processing.remove_edges(pls_sd: Dict)
Removes overlapping m/z regions of adjacent (SIM) windows / scan events.

Parameters pls_sd – List of peaklist objects

Returns List of peaklist objects

dimspy.process.replicate_processing.read_scans(fn: str, function_noise: str, min_scans:
int = 1, filter_scan_events: Dict =
None)

Read, filter, group and sort scans based on the header / filter string Helper function for ‘process_scans (tools
module)’

Parameters

• fn – Path to the .mzml or .raw file

• function_noise – Function to calculate the noise from each scan. The following op-
tions are available:

– median - the median of all peak intensities within a given scan is used as the noise value.

– mean - the unweighted mean average of all peak intensities within a given scan is used
as the noise value.

– mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute
differences between peak intensities and the mean peak intensity (calculated across all
peak intensities within a given scan).

– noise_packets - the noise value is calculated using the proprietary algorithms contained
in Thermo Fisher Scientific’s msFileReader library. This option should only be applied
when you are processing .RAW files.

• min_scans – Minimum number of scans required for each m/z window or event within a
raw/mzML data file.

• filter_scan_events – Include or exclude specific scan events, by default all ALL
scan events will be included. To include or exclude specific scan events use the following
format of a dictionary.

>>> {"include":[[100, 300, "sim"]]} or {"include":[[100, 1000,
→˓"full"]]}

Returns List of peaklist objects

dimspy.process.replicate_processing.average_replicate_scans(name: str, pls: Se-
quence[dimspy.models.peaklist.PeakList],
ppm: float = 2.0,
min_fraction: float
= 0.8, rsd_thres:
float = 30.0, rsd_on:
str = 'intensity',
block_size: int =
5000, ncpus: int =
None)

Align, filter and average replicate scans/peaklist Helper function for ‘process_scans (tools module)’

Parameters

• name – Name average peaklist

40 Chapter 1. Contents

DIMSPy, Release 2.0.0

• pls – List of peaklists

• ppm – Maximum tolerated m/z deviation in parts per million.

• min_fraction – A numerical value from 0 to 1 that specifies the minimum proportion of
scans a given mass spectral peak must be detected in, in order for it to be kept in the output
peaklist. Here, scans refers to replicates of the same scan event type, i.e. if set to 0.33, then
a peak would need to be detected in at least 1 of the 3 replicates of a given scan event type.

• rsd_thres – Relative standard deviation threshold - A numerical value equal-to or
greater-than 0. If greater than 0, then peaks whose intensity values have a percent rela-
tive standard deviation (otherwise termed the percent coefficient of variation) greater-than
this value are excluded from the output peaklist.

• rsd_on – Intensity or SNR

• block_size – Number peaks in each centre clustering block.

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all
CPUs that are available

Returns List of peaklists

dimspy.process.replicate_processing.average_replicate_peaklists(pls: Se-
quence[dimspy.models.peaklist.PeakList],
ppm: float,
min_peaks:
int, rsd_thres:
float = None,
block_size: int
= 5000, ncpus:
int = None)

Align, filter and average replicate peaklists. Helper function for ‘replicate_filter (tools module)’

Parameters

• pls – List of peaklists

• ppm – Maximum tolerated m/z deviation in parts per million.

• min_peaks – Minimum number of technical replicates (i.e. peaklists) a peak has to be
present in.

• rsd_thres – Relative standard deviation threshold - A numerical value equal-to or
greater-than 0. If greater than 0, then peaks whose intensity values have a percent rela-
tive standard deviation (otherwise termed the percent coefficient of variation) greater-than
this value are excluded from the output peaklist.

• block_size – Number peaks in each centre clustering block.

• ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all
CPUs that are available

Returns List of peaklists

dimspy.process.replicate_processing.join_peaklists(name: str, pls: Se-
quence[dimspy.models.peaklist.PeakList])

Join/Merge peaklists (i.e. windows) with different m/z ranges. Helper function for ‘process_scans (tools mod-
ule)’

Parameters

• name – Name newly created joined/merged peaklist

1.2. API reference 41

DIMSPy, Release 2.0.0

• pls – List of peaklists

Returns Peaklist

1.3 Command Line Interface

$ dimspy --help

Executing dimspy version 2.0.0.
usage: __main__.py [-h]

{process-scans,replicate-filter,align-samples,blank-filter,sample-
→˓filter,remove-samples,mv-sample-filter,merge-peaklists,get-peaklists,get-average-
→˓peaklist,hdf5-pm-to-txt,hdf5-pls-to-txt,create-sample-list,unzip,licenses}

...

Python package to process DIMS data

positional arguments:
{process-scans,replicate-filter,align-samples,blank-filter,sample-filter,remove-

→˓samples,mv-sample-filter,merge-peaklists,get-peaklists,get-average-peaklist,hdf5-pm-
→˓to-txt,hdf5-pls-to-txt,create-sample-list,unzip,licenses}

process-scans Process scans and/or stitch SIM windows.
replicate-filter Filter irreproducible peaks from technical replicate

peaklists.
align-samples Align peaklists across samples.
blank-filter Filter peaks across samples that are present in the

blank samples.
sample-filter Filter peaks based on certain reproducibility and

sample class criteria.
remove-samples Remove sample(s) from a peak matrix object or list of

peaklist objects.
mv-sample-filter Filter samples based on the percentage of missing

values.
merge-peaklists Merge peaklists from multiple lists of peaklist or

peak matrix objects.
get-peaklists Get peaklists from a peak matrix object.
get-average-peaklist

Get an average peaklist from a peak matrix object.
hdf5-pm-to-txt Write HDF5 output (peak matrix) to text format.
hdf5-pls-to-txt Write HDF5 output (peak lists) to text format.
create-sample-list Create a sample list from a peak matrix object or list

of peaklist objects.
unzip Extract files from zip file
licenses Show licenses DIMSpy and RawFileReader

optional arguments:
-h, --help show this help message and exit

$ dimspy process-scans --help

Executing dimspy version 2.0.0b1.
usage: __main__.py process-scans [-h] -i source -o OUTPUT [-l FILELIST] -m

{median,mean,mad,noise_packets} -s
SNR_THRESHOLD [-p PPM] [-n MIN_SCANS]
[-a MIN_FRACTION] [-d RSD_THRESHOLD] [-k]
[-r RINGING_THRESHOLD]

(continues on next page)

42 Chapter 1. Contents

DIMSPy, Release 2.0.0

(continued from previous page)

[-e start end scan_type]
[-x start end scan_type] [-z start end]
[-u REPORT] [-b BLOCK_SIZE] [-c NCPUS]

optional arguments:
-h, --help show this help message and exit
-i source, --input source

Directory (*.raw, *.mzml or tab-delimited peaklist
files), single *.mzml/*.raw file or zip archive
(*.mzml only)

-o OUTPUT, --output OUTPUT
HDF5 file to save the peaklist objects to.

-l FILELIST, --filelist FILELIST
Tab-delimited file that include the name of the data
files (*.raw or *.mzml) and meta data. Column names:
filename, replicate, batch, injectionOrder,
classLabel.

-m {median,mean,mad,noise_packets}, --function-noise {median,mean,mad,noise_packets}
Select function to calculate noise.

-s SNR_THRESHOLD, --snr-threshold SNR_THRESHOLD
Signal-to-noise threshold

-p PPM, --ppm PPM Mass tolerance in Parts per million to group peaks
across scans / mass spectra.

-n MIN_SCANS, --min_scans MIN_SCANS
Minimum number of scans required for each m/z range or
event.

-a MIN_FRACTION, --min-fraction MIN_FRACTION
Minimum fraction a peak has to be present. Use 0.0 to
not apply this filter.

-d RSD_THRESHOLD, --rsd-threshold RSD_THRESHOLD
Maximum threshold - relative standard deviation
(Calculated for peaks that have been measured across a
minimum of two scans).

-k, --skip-stitching Skip the step where (SIM) windows are 'stitched' or
'joined' together. Individual peaklists are generated
for each window.

-r RINGING_THRESHOLD, --ringing-threshold RINGING_THRESHOLD
Ringing

-e start end scan_type, --include-scan-events start end scan_type
Scan events to select. E.g. 100.0 200.0 sim or 50.0
1000.0 full

-x start end scan_type, --exclude-scan-events start end scan_type
Scan events to select. E.g. 100.0 200.0 sim or 50.0
1000.0 full

-z start end, --remove-mz-range start end
M/z range(s) to remove. E.g. 100.0 102.0 or 140.0
145.0.

-u REPORT, --report REPORT
Summary/Report of processed mass spectra

-b BLOCK_SIZE, --block-size BLOCK_SIZE
The size of each block of peaks to perform clustering
on.

-c NCPUS, --ncpus NCPUS
Number of central processing units (CPUs).

1.3. Command Line Interface 43

DIMSPy, Release 2.0.0

1.4 Credits

DIMSpy was originally written by Ralf Weber and Albert Zhou and has been developed with the help of many others.
Thanks to everyone who has improved DIMSpy contributing code, features, bug reports (and fixes), and documenta-
tion.

1.4.1 Developers & Contributors

• Ralf J. M. Weber (r.j.weber@bham.ac.uk) - University of Birmingham (UK)

• Jiarui (Albert) Zhou (j.zhou.3@bham.ac.uk) - University of Birmingham (UK), HIT Shenzhen (China)

• Thomas N. Lawson (t.n.lawson@bham.ac.uk) - University of Birmingham (UK)

• Martin R. Jones (martin.jones@eawag.ch) - Eawag (Switzerland)

1.4.2 Funding

DIMSpy acknowledges support from the following funders:

• BBSRC, grant number BB/M019985/1

• European Commission’s H2020 programme, grant agreement number 654241

• Wellcome Trust, grant number 202952/Z/16/Z

1.5 Bugs and Issues

Please report any bugs that you find here. Or fork the repository on GitHub and create a pull request (PR). We welcome
all contributions, and we will help you to make the PR if you are new to git.

1.6 Changelog

All notable changes to this project will be documented here. For more details changes please refer to github commit
history

1.6.1 DIMSpy v2.0.0

Release date: 26 April 2020

• First stable Python 3 only release

• Refactor and improve HDF5 portal to save peaklists and/or peak matrices

• Add compatibility for previous HDF5 files (python 2 version of DIMSpy)

• Improve filelist handling

• mzML or raw files are ordered by timestamp if no filelist is provided (i.e. process_scans)

• Fix warnings (NaturalNameWarning, ResourceWarning, DeprecationWarning)

• Fix ‘blank filter’ bug (missing and/or zero values are excluded)

44 Chapter 1. Contents

mailto:r.j.weber@bham.ac.uk
https://www.birmingham.ac.uk/staff/profiles/biosciences/weber-ralf.aspx
mailto:j.zhou.3@bham.ac.uk
http://www.birmingham.ac.uk/index.aspx
http://www.hitsz.edu.cn
mailto:t.n.lawson@bham.ac.uk
http://www.birmingham.ac.uk/index.aspx
mailto:martin.jones@eawag.ch
https://www.eawag.ch/en/aboutus/portrait/organisation/staff/profile/martin-jones/show/
https://github.com/computational-metabolomics/dimspy/issues
https://github.com/computational-metabolomics/dimspy/
https://github.com/computational-metabolomics/dimspy

DIMSPy, Release 2.0.0

• Improve sub setting / filtering of scan events

• Optimise imports

• Increase coverage tests

• Improve documentation (Read the Docs), including docstrings

1.6.2 DIMSpy v1.4.0

Release date: 2 October 2019

• Final Python 2 release

1.6.3 DIMSpy v1.3.0

Release date: 26 November 2018

1.6.4 DIMSpy v1.2.0

Release date: 29 May 2018

1.6.5 DIMSpy v1.1.0

Release date: 19 February 2018

1.6.6 DIMSpy v1.0.0

Release date: 10 December 2017

1.6.7 DIMSpy v0.1.0 (pre-release)

Release date: 11 July 2017

1.7 Citation

To cite DIMSpy please use the following publication.

Check Zenodo for citing more up-to-date versions of DIMSpy if not listed here.

DIMSpy v2.0.0

Ralf J. M. Weber & Jiarui Zhou. (2020, April 24). DIMSpy: Python package for processing direct-
infusion mass spectrometry-based metabolomics and lipidomics data (Version v2.0.0). Zenodo. http:
//doi.org/10.5281/zenodo.3764169

BibTeX

1.7. Citation 45

https://codecov.io/gh/computational-metabolomics/dimspy
https://dimspy.readthedocs.io/en/latest/
https://zenodo.org/search?page=1&size=20&q=dimspy
http://doi.org/10.5281/zenodo.3764169
http://doi.org/10.5281/zenodo.3764169

DIMSPy, Release 2.0.0

@software{ralf_j_m_weber_2020_3764169,
author = {Ralf J. M. Weber and

Jiarui Zhou},
title = {{DIMSpy: Python package for processing direct-

infusion mass spectrometry-based metabolomics and
lipidomics data}},

month = april,
year = 2020,
publisher = {Zenodo},
version = {v2.0.0},
doi = {10.5281/zenodo.3764169},
url = {https://doi.org/10.5281/zenodo.3764169}

}

DIMSpy v1.4.0

Ralf J. M. Weber & Jiarui Zhou. (2019, October 2). DIMSpy: Python package for processing direct-
infusion mass spectrometry-based metabolomics and lipidomics data (Version v1.4.0). Zenodo. http:
//doi.org/10.5281/zenodo.3764110

BibTeX

@software{ralf_j_m_weber_2019_3764110,
author = {Ralf J. M. Weber and

Jiarui Zhou},
title = {{DIMSpy: Python package for processing direct-

infusion mass spectrometry-based metabolomics and
lipidomics data}},

month = oct,
year = 2019,
publisher = {Zenodo},
version = {v1.4.0},
doi = {10.5281/zenodo.3764110},
url = {https://doi.org/10.5281/zenodo.3764110}

}

1.8 License

DIMSpy is licensed under the GNU General Public License v3.0 (see LICENSE file for licensing information). Copy-
right © 2017 - 2020 Ralf Weber, Albert Zhou

Third-party licenses and copyright

RawFileReader reading tool. Copyright © 2016 by Thermo Fisher Scientific, Inc. All rights reserved. See RawFil-
eReaderLicense for licensing information. Using DIMSpy software for processing Thermo Fisher Scientific *.raw
files implies the acceptance of the RawFileReader license terms. Anyone receiving RawFileReader as part of a larger
software distribution (in the current context, as part of DIMSpy) is considered an “end user” under section 3.3 of the
RawFileReader License, and is not granted rights to redistribute RawFileReader.

46 Chapter 1. Contents

http://doi.org/10.5281/zenodo.3764110
http://doi.org/10.5281/zenodo.3764110
https://github.com/computational-metabolomics/dimspy/blob/master/LICENSE
https://github.com/computational-metabolomics/dimspy/blob/master/RawFileReaderLicense.rst
https://github.com/computational-metabolomics/dimspy/blob/master/RawFileReaderLicense.rst

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

47

DIMSPy, Release 2.0.0

48 Chapter 2. Indices and tables

PYTHON MODULE INDEX

d
dimspy.metadata, 12
dimspy.models.peak_matrix, 23
dimspy.models.peaklist, 13
dimspy.models.peaklist_metadata, 19
dimspy.models.peaklist_tags, 19
dimspy.portals.hdf5_portal, 35
dimspy.portals.mzml_portal, 32
dimspy.portals.paths, 36
dimspy.portals.thermo_raw_portal, 33
dimspy.portals.txt_portal, 34
dimspy.process.peak_alignment, 36
dimspy.process.peak_filters, 37
dimspy.process.replicate_processing, 40
dimspy.tools, 4

49

DIMSPy, Release 2.0.0

50 Python Module Index

INDEX

A
add_attribute() (dimspy.models.peaklist.PeakList

method), 14
add_flag() (dimspy.models.peak_matrix.PeakMatrix

method), 24
add_tag() (dimspy.models.peaklist_tags.PeakList_Tags

method), 20
align_peaks() (in module dim-

spy.process.peak_alignment), 36
align_samples() (in module dimspy.tools), 8
attr_matrix() (dim-

spy.models.peak_matrix.PeakMatrix method),
24

attr_mean_vector() (dim-
spy.models.peak_matrix.PeakMatrix method),
24

attributes() (dim-
spy.models.peak_matrix.PeakMatrix property),
24

attributes() (dimspy.models.peaklist.PeakList prop-
erty), 15

average_replicate_peaklists() (in module
dimspy.process.replicate_processing), 41

average_replicate_scans() (in module dim-
spy.process.replicate_processing), 40

B
blank_filter() (in module dimspy.tools), 8

C
calculate_flags() (dim-

spy.models.peaklist.PeakList method), 15
cleanup_unflagged_peaks() (dim-

spy.models.peaklist.PeakList method), 15
close() (dimspy.portals.mzml_portal.Mzml method),

32
close() (dimspy.portals.thermo_raw_portal.ThermoRaw

method), 34
copy() (dimspy.models.peaklist.PeakList method), 15
count_ms_types() (in module dimspy.metadata), 12
count_scan_types() (in module dimspy.metadata),

12

create_sample_list() (in module dimspy.tools),
12

D
dimspy.metadata (module), 12
dimspy.models.peak_matrix (module), 23
dimspy.models.peaklist (module), 13
dimspy.models.peaklist_metadata (module),

19
dimspy.models.peaklist_tags (module), 19
dimspy.portals.hdf5_portal (module), 35
dimspy.portals.mzml_portal (module), 32
dimspy.portals.paths (module), 36
dimspy.portals.thermo_raw_portal (mod-

ule), 33
dimspy.portals.txt_portal (module), 34
dimspy.process.peak_alignment (module), 36
dimspy.process.peak_filters (module), 37
dimspy.process.replicate_processing

(module), 40
dimspy.tools (module), 4
drop_all_tags() (dim-

spy.models.peaklist_tags.PeakList_Tags
method), 20

drop_attribute() (dim-
spy.models.peaklist.PeakList method), 15

drop_flag() (dimspy.models.peak_matrix.PeakMatrix
method), 24

drop_tag() (dimspy.models.peaklist_tags.PeakList_Tags
method), 20

drop_tag_type() (dim-
spy.models.peaklist_tags.PeakList_Tags
method), 20

dtable() (dimspy.models.peaklist.PeakList property),
16

E
extract_peaklist() (dim-

spy.models.peak_matrix.PeakMatrix method),
24

extract_peaklists() (dim-
spy.models.peak_matrix.PeakMatrix method),
25

51

DIMSPy, Release 2.0.0

F
filter_attr() (in module dim-

spy.process.peak_filters), 37
filter_blank_peaks() (in module dim-

spy.process.peak_filters), 39
filter_fraction() (in module dim-

spy.process.peak_filters), 38
filter_mz_ranges() (in module dim-

spy.process.peak_filters), 38
filter_ringing() (in module dim-

spy.process.peak_filters), 37
filter_rsd() (in module dim-

spy.process.peak_filters), 38
flag_attributes() (dim-

spy.models.peaklist.PeakList property), 16
flag_names() (dim-

spy.models.peak_matrix.PeakMatrix property),
25

flag_values() (dim-
spy.models.peak_matrix.PeakMatrix method),
25

flags() (dimspy.models.peak_matrix.PeakMatrix
property), 25

flags() (dimspy.models.peaklist.PeakList property),
16

fraction() (dimspy.models.peak_matrix.PeakMatrix
property), 25

full_shape() (dim-
spy.models.peak_matrix.PeakMatrix property),
25

full_shape() (dimspy.models.peaklist.PeakList prop-
erty), 16

full_size() (dimspy.models.peaklist.PeakList prop-
erty), 16

G
get_attribute() (dimspy.models.peaklist.PeakList

method), 16
get_peak() (dimspy.models.peaklist.PeakList

method), 16

H
has_attribute() (dimspy.models.peaklist.PeakList

method), 16
has_tag() (dimspy.models.peaklist_tags.PeakList_Tags

method), 20
has_tag_type() (dim-

spy.models.peaklist_tags.PeakList_Tags
method), 20

hdf5_peak_matrix_to_txt() (in module dim-
spy.tools), 10

hdf5_peaklists_to_txt() (in module dim-
spy.tools), 11

headers() (dimspy.portals.mzml_portal.Mzml
method), 32

headers() (dimspy.portals.thermo_raw_portal.ThermoRaw
method), 33

I
ID() (dimspy.models.peaklist.PeakList property), 14
idxs_reps_from_filelist() (in module dim-

spy.metadata), 12
insert_peak() (dimspy.models.peaklist.PeakList

method), 17
intensity_matrix() (dim-

spy.models.peak_matrix.PeakMatrix property),
25

intensity_mean_vector() (dim-
spy.models.peak_matrix.PeakMatrix property),
25

interpret_method() (in module dimspy.metadata),
12

ion_injection_times() (dim-
spy.portals.mzml_portal.Mzml method),
32

ion_injection_times() (dim-
spy.portals.thermo_raw_portal.ThermoRaw
method), 34

is_empty() (dimspy.models.peak_matrix.PeakMatrix
method), 25

J
join_peaklists() (in module dim-

spy.process.replicate_processing), 41

L
load_peak_matrix_from_hdf5() (in module

dimspy.portals.hdf5_portal), 36
load_peak_matrix_from_txt() (in module dim-

spy.portals.txt_portal), 35
load_peaklist_from_txt() (in module dim-

spy.portals.txt_portal), 34
load_peaklists() (in module dimspy.tools), 12
load_peaklists_from_hdf5() (in module dim-

spy.portals.hdf5_portal), 35

M
mask() (dimspy.models.peak_matrix.PeakMatrix prop-

erty), 26
mask_all_peakmatrix (class in dim-

spy.models.peak_matrix), 30
mask_peakmatrix (class in dim-

spy.models.peak_matrix), 30
mask_tags() (dimspy.models.peak_matrix.PeakMatrix

method), 26
merge_peaklists() (in module dimspy.tools), 11

52 Index

DIMSPy, Release 2.0.0

metadata() (dimspy.models.peaklist.PeakList prop-
erty), 17

missing_values() (dim-
spy.models.peak_matrix.PeakMatrix property),
26

missing_values_sample_filter() (in module
dimspy.tools), 10

mode_type_from_header() (in module dim-
spy.metadata), 12

ms_type_from_header() (in module dim-
spy.metadata), 12

mz_matrix() (dimspy.models.peak_matrix.PeakMatrix
property), 26

mz_mean_vector() (dim-
spy.models.peak_matrix.PeakMatrix property),
26

mz_range_from_header() (in module dim-
spy.metadata), 13

mz_range_from_header() (in module dim-
spy.portals.thermo_raw_portal), 33

Mzml (class in dimspy.portals.mzml_portal), 32

O
occurrence() (dim-

spy.models.peak_matrix.PeakMatrix property),
26

P
partition() (in module dimspy.tools), 11
PeakList (class in dimspy.models.peaklist), 13
peaklist() (dimspy.portals.mzml_portal.Mzml

method), 32
peaklist() (dimspy.portals.thermo_raw_portal.ThermoRaw

method), 33
peaklist_ids() (dim-

spy.models.peak_matrix.PeakMatrix property),
27

PeakList_Metadata (class in dim-
spy.models.peaklist_metadata), 19

peaklist_tag_types() (dim-
spy.models.peak_matrix.PeakMatrix property),
27

peaklist_tag_values() (dim-
spy.models.peak_matrix.PeakMatrix property),
27

PeakList_Tags (class in dim-
spy.models.peaklist_tags), 19

peaklist_tags() (dim-
spy.models.peak_matrix.PeakMatrix property),
27

peaklists() (dimspy.portals.mzml_portal.Mzml
method), 32

peaklists() (dimspy.portals.thermo_raw_portal.ThermoRaw
method), 33

PeakMatrix (class in dimspy.models.peak_matrix), 23
peaks() (dimspy.models.peaklist.PeakList property),

17
present() (dimspy.models.peak_matrix.PeakMatrix

property), 27
present_matrix() (dim-

spy.models.peak_matrix.PeakMatrix property),
27

process_scans() (in module dimspy.tools), 4
property() (dimspy.models.peak_matrix.PeakMatrix

method), 27
purity() (dimspy.models.peak_matrix.PeakMatrix

property), 28

R
read_scans() (in module dim-

spy.process.replicate_processing), 40
remove_edges() (in module dim-

spy.process.replicate_processing), 40
remove_empty_peaks() (dim-

spy.models.peak_matrix.PeakMatrix method),
28

remove_peak() (dimspy.models.peaklist.PeakList
method), 17

remove_peaks() (dim-
spy.models.peak_matrix.PeakMatrix method),
28

remove_samples() (dim-
spy.models.peak_matrix.PeakMatrix method),
28

remove_samples() (in module dimspy.tools), 10
replicate_filter() (in module dimspy.tools), 6
rsd() (dimspy.models.peak_matrix.PeakMatrix

method), 28

S
sample_filter() (in module dimspy.tools), 9
save_peak_matrix_as_hdf5() (in module dim-

spy.portals.hdf5_portal), 35
save_peak_matrix_as_txt() (in module dim-

spy.portals.txt_portal), 34
save_peaklist_as_txt() (in module dim-

spy.portals.txt_portal), 34
save_peaklists_as_hdf5() (in module dim-

spy.portals.hdf5_portal), 35
scan_dependents() (dim-

spy.portals.mzml_portal.Mzml method),
32

scan_dependents() (dim-
spy.portals.thermo_raw_portal.ThermoRaw
method), 34

scan_ids() (dimspy.portals.mzml_portal.Mzml
method), 32

Index 53

DIMSPy, Release 2.0.0

scan_ids() (dimspy.portals.thermo_raw_portal.ThermoRaw
method), 33

scan_type_from_header() (in module dim-
spy.metadata), 13

set_attribute() (dimspy.models.peaklist.PeakList
method), 17

set_peak() (dimspy.models.peaklist.PeakList
method), 17

shape() (dimspy.models.peak_matrix.PeakMatrix
property), 29

shape() (dimspy.models.peaklist.PeakList property),
18

size() (dimspy.models.peaklist.PeakList property), 18
sort_ms_files_by_timestamp() (in module

dimspy.portals.paths), 36
sort_peaks_order() (dim-

spy.models.peaklist.PeakList method), 18

T
Tag (class in dimspy.models.peaklist_tags), 22
tag_of() (dimspy.models.peaklist_tags.PeakList_Tags

method), 21
tag_types() (dimspy.models.peaklist_tags.PeakList_Tags

property), 21
tag_values() (dim-

spy.models.peaklist_tags.PeakList_Tags
property), 21

tags() (dimspy.models.peaklist.PeakList property), 18
tags() (dimspy.models.peaklist_tags.PeakList_Tags

property), 21
tags_of() (dimspy.models.peak_matrix.PeakMatrix

method), 29
ThermoRaw (class in dim-

spy.portals.thermo_raw_portal), 33
tics() (dimspy.portals.mzml_portal.Mzml method), 32
tics() (dimspy.portals.thermo_raw_portal.ThermoRaw

method), 34
to_df() (dimspy.models.peaklist.PeakList method), 18
to_dict() (dimspy.models.peaklist.PeakList method),

18
to_int() (in module dimspy.metadata), 13
to_list() (dimspy.models.peaklist.PeakList method),

19
to_list() (dimspy.models.peaklist_tags.PeakList_Tags

method), 21
to_peaklist() (dim-

spy.models.peak_matrix.PeakMatrix method),
29

to_str() (dimspy.models.peak_matrix.PeakMatrix
method), 29

to_str() (dimspy.models.peaklist.PeakList method),
19

to_str() (dimspy.models.peaklist_tags.PeakList_Tags
method), 21

ttype() (dimspy.models.peaklist_tags.Tag property),
22

typed() (dimspy.models.peaklist_tags.Tag property),
22

typed_tags() (dim-
spy.models.peaklist_tags.PeakList_Tags
property), 21

U
unmask_all_peakmatrix (class in dim-

spy.models.peak_matrix), 31
unmask_peakmatrix (class in dim-

spy.models.peak_matrix), 31
unmask_tags() (dim-

spy.models.peak_matrix.PeakMatrix method),
30

untyped_tags() (dim-
spy.models.peaklist_tags.PeakList_Tags
property), 21

update_labels() (in module dimspy.metadata), 13
update_metadata_and_labels() (in module

dimspy.metadata), 13

V
validate_and_sort_paths() (in module dim-

spy.portals.paths), 36
validate_metadata() (in module dim-

spy.metadata), 13
value() (dimspy.models.peaklist_tags.Tag property),

22

54 Index

	Contents
	Installation
	Conda (recommended)
	PyPi
	Testing

	API reference
	tools
	metadata
	models
	portals
	process

	Command Line Interface
	Credits
	Developers & Contributors
	Funding

	Bugs and Issues
	Changelog
	DIMSpy v2.0.0
	DIMSpy v1.4.0
	DIMSpy v1.3.0
	DIMSpy v1.2.0
	DIMSpy v1.1.0
	DIMSpy v1.0.0
	DIMSpy v0.1.0 (pre-release)

	Citation
	License

	Indices and tables
	Python Module Index
	Index

