

Welcome to DIMSpy’s documentation!

[image: Py versions] [https://pypi.python.org/pypi/dimspy/] [image: Version] [https://pypi.python.org/pypi/dimspy/] [image: Bioconda] [http://bioconda.github.io/recipes/dimspy/README.html] [image: galaxy-eu] [http://usegalaxy.eu] [image: Git] [https://github.com/computational-metabolomics/dimspy] [image: Build Status (Travis)] [https://travis-ci.com/computational-metabolomics/dimspy] [image: Build Status (AppVeyor)] [https://ci.appveyor.com/project/RJMW/dimspy/branch/master] [image: codecov] [https://codecov.io/gh/computational-metabolomics/dimspy] [image: License] [https://www.gnu.org/licenses/gpl-3.0.html] [image: binder] [https://mybinder.org/v2/gh/computational-metabolomics/dimspy/master?filepath=notebooks%2Fworkflow.ipynb] [image: RTD doc] [https://dimspy.readthedocs.io/en/latest/] [image: gitter] [https://gitter.im/computational-metabolomics/dimspy?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Python package for processing direct-infusion mass spectrometry-based metabolomics and lipidomics data

Contents

	Installation
	Conda (recommended)

	PyPi

	Testing

	API reference
	tools

	metadata

	models
	peaklist

	peaklist_metadata

	peaklist_tags

	peak_matrix

	portals
	mzml_portal

	thermo_raw_portal

	txt_portal

	hdf5_portal

	paths

	process
	peak_alignment

	peak_filters

	scan_processing

	Command Line Interface

	Credits
	Developers & Contributors

	Funding

	Bugs and Issues

	Changelog
	DIMSpy v2.0.0

	DIMSpy v1.4.0

	DIMSpy v1.3.0

	DIMSpy v1.2.0

	DIMSpy v1.1.0

	DIMSpy v1.0.0

	DIMSpy v0.1.0 (pre-release)

	Citation

	License

Indices and tables

	Index

	Search Page

Installation

Conda (recommended)

Install Miniconda, follow the steps described here [https://docs.conda.io/projects/conda/en/latest/user-guide/install]

Start the conda prompt

	Windows: Open the Anaconda Prompt via the Start menu

	macOS or Linux: Open a Terminal

Create a dimspy specific conda environment.
This will install a the dependencies required to run dimspy:

$ conda create --yes --name dimspy -c conda-forge -c bioconda -c computational-metabolomics

Note

	The installation process will take a few minutes.

	Feel free to use a different name for the Conda environment

You can use the following command to remove a conda environment:

$ conda env remove -y --name dimspy

This is only required if something has gone wrong in the previous step.

Activate the dimspy environment:

$ conda activate dimspy

To test your dimspy installation, in your Conda Prompt, run the command:

$ dimspy --help

or:

$ python
import dimspy

Close and deactivate the dimspy environment when you’re done:

$ conda deactivate

PyPi

Install the current release of dimspy with pip:

$ pip install dimspy

Note

	The installation process will take a few minutes.

To upgrade to a newer release use the --upgrade flag:

$ pip install --upgrade dimspy

If you do not have permission to install software systemwide, you can
install into your user directory using the --user flag:

$ pip install --user dimspy

Alternatively, you can manually download dimspy from
GitHub [https://github.com/computational-metabolomics/dimspy/releases] or
PyPI [https://pypi.python.org/pypi/dimspy].
To install one of these versions, unpack it and run the following from the
top-level source directory using the Terminal:

$ pip install .

Testing

DIMSpy uses the Python pytest testing package. You can learn more
about pytest on their homepage [https://pytest.org].

API reference

	tools

	metadata

	models

	portals

	process

tools

	
dimspy.tools.process_scans(source: str, function_noise: str, snr_thres: float, ppm: float, min_fraction: Optional[float] = None, rsd_thres: Optional[float] = None, min_scans: int = 1, filelist: Optional[str] = None, skip_stitching: bool = False, remove_mz_range: list = None, ringing_thres: Optional[float] = None, filter_scan_events: Dict = None, report: Optional[str] = None, block_size: int = 5000, ncpus: int = None)

	Extract, filter and average spectral data from input .RAW or .mzML files and generate a single mass
spectral peaklist (object) for each of the data files within a directory or defined in
the ‘filelist’ (if provided).

Warning

When using .mzML files generated using the Proteowizard tool, SIM-type scans will only be treated
as spectra if the ‘simAsSpectra’ filter was set to true during the conversion process:
msconvert.exe example.raw –simAsSpectra –64 –zlib –filter “peakPicking true 1-”

	Parameters

	
	source – Path to a set/directory of .raw or .mzML files

	function_noise – Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo Fisher
Scientific’s msFileReader library. This option should only be applied when you are processing .RAW files.

	snr_thres – Peaks with a signal-to-noise ratio (SNR) less-than or equal-to this value will be removed
from the output peaklist.

	ppm – Maximum tolerated m/z deviation in parts per million.

	min_fraction – A numerical value from 0 to 1 that specifies the minimum proportion of scans a given mass
spectral peak must be detected in, in order for it to be kept in the output peaklist. Here, scans refers to
replicates of the same scan event type, i.e. if set to 0.33, then a peak would need to be detected in at least
1 of the 3 replicates of a given scan event type.

	rsd_thres – Relative standard deviation threshold - A numerical value equal-to or greater-than 0.
If greater than 0, then peaks whose intensity values have a percent relative standard deviation (otherwise termed
the percent coefficient of variation) greater-than this value are excluded from the output peaklist.

	min_scans – Minimum number of scans required for each m/z window or event within a raw/mzML data file.

	filelist – A tab-delimited text file containing filename and classLabel information for each
experimental sample. These column headers MUST be included in the first row of the table. For a standard DIMS
experiment, users are advised to also include the following additional columns:

	injectionOrder - integer values ranging from 1 to i, where i is the total number of independent injections
performed as part of a DIMS experiment. e.g. if a study included 20 samples, each of which was injected as four
independent replicates, there would be at least 20 * 4 injections, so i = 80 and the range for injection
order would be from 1 to 80 in steps of 1.

	replicate - integer value from 1 to r, indicating the order in which technical replicates of each study
sample were injected in to the mass spectrometer, e.g. if study samples were analysed in quadruplicate,
r = 4 and integer values are accordingly 1, 2, 3, 4.

	batch - integer value from 1 to b, where b corresponds to the total number of batches analysed under
define analysis conditions, for any given experiment. e.g. : if 4 independent plates of polar extracts were
analysed in the positive ionisation mode, then valid values for batch are 1, 2, 3 and 4.

This filelist may include additional columns, e.g. additional metadata relating to study samples. Ensure that columns
names do not conflict with existing column names.

	skip_stitching – Selected Ion Monitoring (SIM) scans with overlapping scan ranges can be “stitched” together
in to a pseudo-spectrum. This is achieved by setting this parameter to False (default).

	remove_mz_range – This option allows for specific m/z regions of the output peaklist to be deleted, this
option may be useful for removing sections of a spectrum known to correspond to system noise peaks.

	ringing_thres – Fourier transform-based mass spectra often contain peaks (ringing artefacts) around
spectral features that require removal. This threshold is a positive float indicating the required relative
intensity a peak must exceed (with reference to the largest peak in a cluster of peaks) in order to be retained.

	filter_scan_events – Include or exclude specific scan events, by default all ALL scan events will be
included. To include or exclude specific scan events use the following format of a dictionary.

>>> {"include":[[100, 300, "sim"]]} or {"include":[[100, 1000, "full"]]}

	report – A tab-delimited text file to write measures of quality (e.g. RSD, number of peaks, etc) for each scan event processed in each .RAW or .mzML files.

	block_size – Number peaks in each centre clustering block.

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all CPUs that are available

	Returns

	List of peaklist objects

	
dimspy.tools.replicate_filter(source: Union[Sequence[dimspy.models.peaklist.PeakList], str], ppm: float, replicates: int, min_peaks: int, rsd_thres: Optional[float] = None, filelist: Optional[str] = None, report: Optional[str] = None, block_size: int = 5000, ncpus: int = None)

	Peaks from each technical replicate (for a given study sample) are aligned using a one-dimensional hierarchical
clustering procedure (applied on the mass-to-charge level).
Peaks are aligned only if the difference in their mass-to-charge ratios, when divided by the average of their
mass-to-charge ratios and multiplied by 1 × 106 (i.e. when measured in units of parts-per-million, ppm),
is less-than or equal-to the user-defined ‘ppm error tolerance’. After alignment, a set of user-defined filters are
applied to retain only those peaks that:

	occur in equal-to or more-than the user-defined ‘Number of technical replicates a peak has to be present
in’, i.e. if set to 2, then a peak must be detected in at least two of the replicate analyses, and/or

	have relative standard deviation (measured in %; may otherwise be referred to as the percent coefficient
of variation) of intensity values, across technical replicates, that is equal-to or less-than the user-defined
‘relative standard deviation threshold’ (if defined, otherwise ignored).

Warning

When the parameter “number of technical replicates for each sample” is set to a value less-than the total
number of technical replicates actually acquired for each study sample, this tool will automatically determine
which combination of technical replicates to combine. See the parameter description (below) for further details.

	Parameters

	
	source – A list of processed peaklist objects generated by ‘process_scans’ or path to .hdf5 file

	ppm – Maximum tolerated m/z deviation in parts per million.

	replicates – Number of technical replicates for each sample - the total number of technical replicates
acquired for each study sample. This value must be set to the lowest number of technical replicates acquired
for ANY of the study samples, or alternatively, may be set to the minimum number of replicates the user would
like to select from the total number of technical replicates for a biological sample.

	min_peaks – Minimum number of technical replicates a peak has to be present in.
For a given biological sample, the number of replicates that will be used to generate the replicate-filtered
peaklist. If this parameter is set to a value less-than the total number of technical replicates acquired for
each biological sample, it will automatically determines which combination of technical replicates yields
the best overall rank. Otherwise, all technical replicates are used. Ranking of the combinations of
technical replicates is based on the average of the following three scores:

	score 1: peak count / peak count present in n-out-n (e.g. 3-out-of-3)

	score 2: peak count present in x-out-of-n (e.g. 3-out-of-3) / MAX peak count present in x-out-of-n across
sets of replicates

	score 3: RSD categories (0-5 (score=1.0), 5-10 (score=0.9), 10-15 (score=0.8), etc)

	rsd_thres – Relative standard deviation threshold - a numerical value from 0 upwards that defines the
acceptable percentage relative standard deviation (otherwise termed the percent coefficient of variation)
of a peak’s intensity across technical replicates. Peaks are removed from the output ‘replicate-filtered’
peaklist if this condition is not met. Set to None to skipe this filter.

	filelist – A tab-delimited text file containing filename and classLabel information for each
experimental sample. There is no need to provide a filelist again if this has been done
already as part of one of the previous processing steps (i.e. see process scans or replicate filter) -
except if specific samples need to be excluded. These column headers MUST be included in the first row of the table. For a standard DIMS
experiment, users are advised to also include the following additional columns:

	injectionOrder - integer values ranging from 1 to i, where i is the total number of independent injections
performed as part of a DIMS experiment. e.g. if a study included 20 samples, each of which was injected as four
independent replicates, there would be at least 20 * 4 injections, so i = 80 and the range for injection
order would be from 1 to 80 in steps of 1.

	replicate - integer value from 1 to r, indicating the order in which technical replicates of each study
sample were injected in to the mass spectrometer, e.g. if study samples were analysed in quadruplicate,
r = 4 and integer values are accordingly 1, 2, 3, 4.

	batch - integer value from 1 to b, where b corresponds to the total number of batches analysed under
define analysis conditions, for any given experiment. e.g. : if 4 independent plates of polar extracts were
analysed in the positive ionisation mode, then valid values for batch are 1, 2, 3 and 4.

This filelist may include additional columns, e.g. additional metadata relating to study samples. Ensure that columns
names do not conflict with existing column names.

	report – A tab-delimited text file to write measures of quality (e.g. RSD, number of peaks, etc) for each
processed ‘replicate-filtered’ peaklist.

	block_size – Number peaks in each centre clustering block.

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all CPUs that are available

	Returns

	List of peaklist objects

	
dimspy.tools.align_samples(source: Union[Sequence[dimspy.models.peaklist.PeakList], str], ppm: float, filelist: Optional[str] = None, block_size: int = 5000, ncpus: int = None)

	Study samples (i.e. PeakList Objects) are aligned to create PeakMatrix object. The PeakMatrix object comprises
of a table, with samples along one axis and the mass-to-charge ratios of detected mass spectral peaks along the
opposite axis. At the intersection of sample and mass-to-charge ratio, the intensity is given for a specific peak
in a specific sample (if no intensity recorded, then ‘nan’ is inserted).

	Parameters

	
	source – A list of processed peaklist objects generated by ‘process_scans’ and/or ‘replicate_filter’,
or path to .hdf5 file.

	ppm – Maximum tolerated m/z deviation in parts per million.

	filelist – A tab-delimited text file containing filename and classLabel information for each
experimental sample. There is no need to provide a filelist again if this has been done
already as part of one of the previous processing steps (i.e. see process scans or replicate filter) -
except if specific samples need to be excluded. These column headers MUST be included in the first
row of the table.

This filelist may include additional columns, e.g. additional metadata relating to study samples.
Ensure that column names do not conflict with existing column names.

	block_size – Number peaks in each centre clustering block.

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all CPUs that are available

	Returns

	PeakMatrix object

	
dimspy.tools.blank_filter(peak_matrix: Union[dimspy.models.peak_matrix.PeakMatrix, str], blank_label: str, min_fraction: float = 1.0, min_fold_change: float = 1.0, function: str = 'mean', rm_samples: bool = True, labels: Optional[str] = None)

	
	Parameters

	
	peak_matrix – PeakMatrix object

	blank_label – Label for the blank samples - a string indicating the name of the class to be used for
filtering (e.g. blank), i.e. the “reference” class. This string must have been included in the “classLabel”
column of the metadata file associated with the process_sans or replicate_filter function(s).

	min_fraction – A numeric value ranging from 0 to 1. Setting this value to None or 0 will skip this
filtering step. A value greater than 0 requires that for each peak in the peak intensity matrix,
at least this proportion of non-reference samples have to have an intensity value that exceeds the product
of: (A) the average intensity of “reference” class intensities and (B) the user-defined “min_fold_change”.
If this condition is not met, the peak is removed from the peak intensity matrix.

	min_fold_change – A numeric value from 0 upwards. When minimum fraction filtering is enabled, this value
defines the minimum required ratio between the intensity of a peak in a “non-reference” sample and the average
intensity of the “reference” sample(s). Peaks with ratios exceeding this threshold are considered to have been
reliably detected in a “non-reference” sample.

	function – Function to calculate the ‘reference’ intensity

	mean - corresponds to using the non-weighted average of “reference” sample peak intensities
(NA values are ignored) in calculating the “reference” to “non-reference” peak intensity ratio.

	median - corresponds to using the median of “reference” sample peak intensities (NA values are ignored)
in calculating the “reference” to “non-reference” peak intensity ratio.

	max corresponds to the use of the maximum intensity among “reference” sample peak intensities
(NA values are ignored) in calculating the “reference” to “non-reference” peak intensity ratio.

	rm_samples – Remove blank samples from the output peak matrix:
* True - samples belonging to the user-defined “reference” class are removed from the output peak matrix
* False - samples belonging to the user-defined “reference” class are retained in the output peak matrix.

	labels – Path to the metadata file

	Returns

	PeakMatrix object

	
dimspy.tools.sample_filter(peak_matrix: Union[dimspy.models.peak_matrix.PeakMatrix, str], min_fraction: float, within: bool = False, rsd_thres: Optional[float] = None, qc_label: Optional[str] = None, labels: Optional[str] = None)

	Removes peaks from the input PeakMatrix object (or .hdf5 file that were detected in fewer-than a user-defined
minimum number of study samples.

	There are many and varied reasons why a peak may not have been detected in all study samples, including:
	
	due to having an intensity (concentration) close to the signal-to-noise limit of the system;

	due to having been present in only one of the study classes (e.g. a drug administered to the ‘treatment’
class samples);

	due to ion suppression/enhancement effects in the mass spectrometer source region; etc.

	Parameters

	
	peak_matrix – PeakMatrix object or path to .hdf5 file

	min_fraction – Minimum fraction - a numeric value between 0 and 1 indicating the proportion of study
samples in which a peak must have a recorded intensity value in order for it to be retained in the output peak
intensity matrix; e.g. 0.5 means that at least 50% of samples (whether assessed across all classes, or within
each class individually) must have a recorded intensity value for a specific peak in order for it to be retained
in the output peak matrix.

	within – Apply sample filter within each sample class

	False - check across ALL classes simultaneously whether greater-than the user-defined “Minimum fraction”
of samples contained an intensity value for a specific mass spectral peak.

	True - check within EACH class separately whether greater-than the user-defined “Minimum fraction” of
samples contained an intensity value for a specific mass spectral peak.

Warning

if in ANY class a peak is detected in greater-than the user-defined minimum fraction of samples, then
the peak is retained in the output peak matrix. For classes in which this condition is not met, the
peak intensity recorded for that peak (if any) will still be presented in the output peak matrix.
If no peak intensity was recorded in a sample, then a ‘0’ is inserted in to the peak matrix.

	rsd_thres – Relative standard deviation threshold - A numerical value equal-to or greater-than 0.
If greater than 0, then peaks whose intensity values have a percent relative standard deviation (otherwise termed
the percent coefficient of variation) greater-than this value are excluded from the output PeakMatrix object.

	qc_label – Label for the QC samples - a string indicating the name of the class to be used for
filtering, i.e. the “reference” class. This string must have been included in the “classLabel”
column of the metadata file associated with the process_sans or replicate_filter function(s).

	labels – Path to a metadata file

	Returns

	PeakMatrix object

	
dimspy.tools.missing_values_sample_filter(peak_matrix: dimspy.models.peak_matrix.PeakMatrix, max_fraction: float)

	Removes study samples with greater-than a user-defined “Maximum percentage of
missing values” from the peak intensity matrix. A missing value is defined as the absence of a recorded peak
intensity value for a specific mass spectral peak, in a specific study sample.

Samples with large numbers of missing values are often observed where a failed mass spectral
acquisition has occurred, the reasons for which are many and diverse.

	Parameters

	
	peak_matrix – PeakMatrix object

	max_fraction –
	Maximum percentage of missing values (REQUIRED; default = 0.8) - a numeric value ranging
	from 0 to 1 (decimal representation of percentage), where:

	A value of 0 (i.e. 0%) corresponds to a very harsh filtering procedure, in which only those samples with zero
missing values are retained in the output peak matrix.

	A value of 1 (i.e. 100%) corresponds to a very liberal filtering procedure, in which samples with as many as
100% missing values will be retained in the output peak matrix.

	Returns

	PeakMatrix object

	
dimspy.tools.remove_samples(obj: Union[dimspy.models.peak_matrix.PeakMatrix, Sequence[dimspy.models.peaklist.PeakList]], sample_names: list)

	Remove samples from a PeakMatrix or list of PeakLists

	Parameters

	
	obj – PeakMatrix object or List of PeakList objects

	sample_names – List of sample names (Peaklist IDs)

	Returns

	PeakMatrix object or List of Peaklist Objects

	
dimspy.tools.hdf5_peak_matrix_to_txt(filename: str, path_out: str, attr_name: str = 'intensity', rsd_tags: tuple = (), delimiter: str = '\t', samples_in_rows: bool = True, comprehensive: bool = False, compatibility_mode: bool = False)

	Converts a .hdf5 file, containing a peak intensity matrix, to an user-friendly .tsv (tab-separated values) file.

	Parameters

	
	filename – Path to the .hdf5 file to read from.

	path_out – Path to a text file to write to.

	attr_name – The Peak Matrix should contain Intensity|m/z|SNR| values

	rsd_tags – Calculate RDS values for the following sample classes (e.g. QC, control)

	delimiter – Values on each line of the file are separated by this character.

	samples_in_rows – Should the rows or columns represent the samples?

	comprehensive – Comprehensive Peak Matrix (e.g. m/z and intensity, rsd, missing values).

	compatibility_mode – Set to True to read .hdf5 files from dimspy < v2.0 exported .hdf5 files

	
dimspy.tools.hdf5_peaklists_to_txt(filename: str, path_out: str, delimiter: str = '\t', compatibility_mode: bool = False)

	Converts a .hdf5 file, containing a list peaklists, to user-friendly .tsv (tab-separated values) files.

	Parameters

	
	filename – Path to the .hdf5 file to read from.

	path_out – Path to directory to write to.

	delimiter – Values on each line of the file are separated by this character.

	compatibility_mode – Set to True to read .hdf5 files exported using dimspy < v2.0.

	
dimspy.tools.merge_peaklists(source: Sequence[dimspy.models.peaklist.PeakList], filelist: Optional[str] = None)

	Extracts and exports specific PeakList object from one or more list or one or more .hdf5 files,
to one or more lists or .hdf5 files. If more-than one .hdf5 file is exported, users can control
which subset of peaklists are exported to which list.

	Parameters

	
	source – List or tuple of Peaklist objects, or .hdf5 files

	filelist – A tab-delimited text file containing metadata to determine which peaklists are exported together:

Example of a filelist - the optional multilist column determines which peaklists are exported together.

	filename

	classLabel

	replicate

	batch

	injectionOrder

	multilist

	[…]

	sample_rep1.raw

	sample

	1

	1

	1

	1

	[…]

	sample_rep2.raw

	sample

	2

	1

	2

	1

	[…]

	sample_rep3.raw

	sample

	3

	1

	3

	1

	[…]

	sample_rep4.raw

	sample

	4

	1

	4

	1

	[…]

	blank_rep1.raw

	blank

	1

	1

	5

	2

	[…]

	blank_rep2.raw

	blank

	2

	1

	6

	2

	[…]

	blank_rep3.raw

	blank

	3

	1

	7

	2

	[…]

	blank_rep4.raw

	blank

	4

	1

	8

	2

	[…]

	…

	…

	…

	…

	…

	…

	[…]

	Returns

	Nested lists of Peaklist objects (e.g. [[pl_01, pl_02], [pl_03, pl_04, pl05]]

	
dimspy.tools.partition(alist: list, indices: list)

	Divide separated lists into nested sublists

	Parameters

	
	alist – List

	indices – Indices

	Returns

	Nested List

	
dimspy.tools.load_peaklists(source: Sequence[dimspy.models.peaklist.PeakList])

	Load a set of processed PeakLists

	Parameters

	source – list of Peaklist objects, .hdf5 file, or path to a directory

	Returns

	List of Peaklist Objects

	
dimspy.tools.create_sample_list(source: Union[Sequence[dimspy.models.peaklist.PeakList], dimspy.models.peak_matrix.PeakMatrix], path_out: str, delimiter: str = '\t')

	Create a sample list based on a existing list of PeakList Objects or PeaMatrix Object.

	Parameters

	
	source – List of PeakList objects or PeakMatrix object

	path_out – Path to a text file text file to write to.

	delimiter – Values on each line of the file are separated by this character.

metadata

	
dimspy.metadata.count_ms_types(hs: list) → int

	Count the number of unique ms types

	Parameters

	hs – List of headers or filter strings

	Returns

	Count

	
dimspy.metadata.count_scan_types(hs: list) → int

	Count the number of unique scan types

	Parameters

	hs – List of headers or filter strings

	Returns

	Count

	
dimspy.metadata.idxs_reps_from_filelist(replicates: list)

	
	Parameters

	replicates –

	Returns

	

	
dimspy.metadata.interpret_method(mzrs: list)

	Interpret and define type of method

	Parameters

	mzrs – Nested list of m/z ranges / windows

	Returns

	Type of MS method

	
dimspy.metadata.mode_type_from_header(h: str) → str

	Extract scan mode from the header of filter string

	Parameters

	h – header or filter string

	Returns

	Scan type (e.g. p = profile, c = centroid)

	
dimspy.metadata.ms_type_from_header(h: str) → str

	Extract the ms type from header or filter string

	Parameters

	h – header or filter string

	Returns

	ms type (e.g. FTMS and ITMS)

	
dimspy.metadata.mz_range_from_header(h: str) → Sequence[float]

	Extract m/z range from header or filter string

	Parameters

	h – Header or filter string

	Returns

	m/z range

	
dimspy.metadata.scan_type_from_header(h: str) → str

	Extract the scan type from the header of filter string

	Parameters

	h – header or filter string

	Returns

	Scan type (e.g. full or sim)

	
dimspy.metadata.to_int(x)

	
	Parameters

	x – Value to convert to int

	Returns

	Value as int (or False if conversion not possible)

	
dimspy.metadata.update_labels(pm: dimspy.models.peak_matrix.PeakMatrix, fn_tsv: str) → dimspy.models.peak_matrix.PeakMatrix

	Update Sample labels PeakMatrix object
:param pm: peakMatrix Object
:param fn_tsv: Path to tab-separated file
:return: peakMatrix Object

	
dimspy.metadata.update_metadata_and_labels(peaklists: Sequence[dimspy.models.peaklist.PeakList], fl: Dict)

	Update metadata

	Parameters

	
	peaklists – List of peaklist Objects

	fl – Dictionary with meta data

	Returns

	List of peaklist objects

	
dimspy.metadata.validate_metadata(fn_tsv: str) → collections.OrderedDict

	Check and validate metadata within a tab-separated file

	Parameters

	fn_tsv – Path to tab-separated file

	Returns

	Dictionary

models

peaklist

	
class dimspy.models.peaklist.PeakList(ID: str, mz: Sequence[float], intensity: Sequence[float], **metadata)

	Bases: object

The PeakList class.

Stores mass spectrometry peaks list data. It requires an ID, mz values, and intensities. It can store extra peak
attributes e.g. SNRs, and peaklist tags and metadata. It utilises the automatically managed flags to “remove” or
“retain” peaks without actually delete them. Therefore the filterings on the peaks are traceable.

	Parameters

	
	ID – The ID of the peaklist data, unique string or integer value is recommended

	mz – Mz values of all the peaks. Must in the ascending order

	intensity – Intensities of all the peaks. Must have the same size as mz

	kwargs – Key-value pairs of the peaklist metadata

>>> mz_values = np.random.uniform(100, 1200, size = 100)
>>> int_values = np.random.normal(60, 10, size = 100)
>>> peaks = PeakList('dummy', mz_values, int_values, description = 'a dummy peaklist')

Internally the peaklist data is stored by using numpy structured array namely the attribute talbe (this may change in the future):

	mz

	intensity

	snr

	snr_flag

	…

	flags*

	102.5

	21.7

	10.5

	True

	…

	True

	111.7

	12.3

	5.1

	False

	False

	126.3

	98.1

	31.7

	True

	True

	133.1

	68.9

	12.6

	True

	True

	…

	
	
	
	

Each column is called an attribute. The first two attributes are fixed as “mz” and “intensity”. They cannot be added or
removed as the others. The last “attribute” is the “flags”, which is fact stored separately. The “flags” column is
calculated automatically according to all the manually set flag attributes, e.g., the “snr_flag”. It can only be changed
by the class itself. The unflagged peaks are considered as “removed”. They are kept internally mainly for visualization
and tracing purposes.

Warning

Removing a flag attribute may change the “flags” column, and cause the unflagged peaks to be flagged again. As
most the processes are applied only on the flagged peaks, these peaks, if the others have gone through such process,
may have incorrect values.

In principle, setting a flag attribute should be considered as an irreversible process.

	
property ID

	Property of the peaklist ID.

	Getter

	Returns the peaklist ID

	Setter

	Set the peaklist ID

	Type

	Same as input ID

	
add_attribute(attr_name: str, attr_value: Sequence, attr_dtype: Union[Type, str, None] = None, is_flag: bool = False, on_index: Optional[int] = None, flagged_only: bool = True, invalid_value=nan)

	Adds an new attribute to the PeakList attribute table.

	Parameters

	
	attr_name – The name of the new attribute, must be a string

	attr_value – The values of the new attribute. It’s size must equals to PeakList.size
(if flagged_only == True), or PeakList.full_size (if flagged_only == False)

	attr_dtype – The data type of the new attribute. If it is set to None, the PeakList will
try to detect the data type based on attr_value. If the detection failed it will take the “object” type. Default = None

	is_flag – Whether the new attribute is a flag attribute, i.e., will be used in flags calculation. Default = False

	on_index – Insert the new attribute on a specific column. It can’t be 0 or 1, as the first two
attributes are fixed as mz and intensity. Setting to None means to put it to the last column. Default = None

	flagged_only – Whether the attr_value is set to the flagged peaks or all peaks. Default = True

	invalid_value – If flagged_only is set to True, this value will be assigned to the unflagged peaks.
The actual value depends on the attribute data type. For instance, on a boolean attribute invalid_value = 0 will
be converted to False. Default = numpy.nan

	Return type

	PeakList object (self)

	
property attributes

	Property of the attribute names.

	Getter

	Returns a tuple of the attribute names

	Type

	tuple

	
calculate_flags()

	Re-calculates the flags according to the flag attributes.

	Return type

	numpy array

Note

This method will be called automatically every time a flag attribute is added, removed, or changed.

	
cleanup_unflagged_peaks(flag_name: Optional[str] = None)

	Remove unflagged peaks.

	Parameters

	flag_name – Remove peaks unflagged by this flag attribute. Setting None means to remove peaks unflagged by
the overall flags. Default = None

	Return type

	PeakList object (self)

>>> print(peaks)
mz, intensity, intensity_flag, snr, snr_flag, flags
10, 70, True, 10, False, False
20, 60, True, 20, True, True
30, 50, False, 30, True, False
40, 40, False, 40, True, False
>>> print(peaks.cleanup_unflagged_peaks('snr_flag'))
mz, intensity, intensity_flag, snr, snr_flag, flags
20, 60, True, 20, True, True
30, 50, False, 30, True, False
40, 40, False, 40, True, False
>>> print(peaks.cleanup_unflagged_peaks())
mz, intensity, intensity_flag, snr, snr_flag, flags
20, 60, True, 20, True, True

	
copy()

	Returns a deep copy of the peaklist.

	Return type

	PeakList object

	
drop_attribute(attr_name: str)

	Drops an existing attribute.

	Parameters

	attr_name – The attribute name to drop. It cannot be mz, intensity, or flags

	Return type

	PeakList object (self)

	
property dtable

	Property of the overall attribute table.

	Getter

	Returns the original attribute table

	Type

	numpy structured array

Warning

This property directly accesses the internal attribute table. Be careful when manipulating the data,
particularly pay attention to the potential side-effects.

	
property flag_attributes

	Property of the flag attribute names.

	Getter

	Returns a tuple of the flag attribute names

	Type

	tuple

	
property flags

	Property of the flags.

	Getter

	Returns a deep copy of the flags array

	Type

	numpy array

	
property full_shape

	Property of the peaklist full attributes table shape.

	Getter

	Returns the full attibutes table shape, including the unflagged peaks

	Type

	tuple

	
property full_size

	Property of the peaklist full size.

	Getter

	Returns the full peaklist size, i.e., including the unflagged peaks

	Type

	int

	
get_attribute(attr_name: str, flagged_only: bool = True)

	Gets values of an existing attribute.

	Parameters

	
	attr_name – The attribute to get values

	flagged_only – Whether to return the values of flagged peaks or all peaks. Default = True

	Return type

	numpy array

	
get_peak(peak_index: Union[int, Sequence[int]], flagged_only: bool = True)

	Gets values of a peak.

	Parameters

	
	peak_index – The index of the peak to get values

	flagged_only – Whether the values are taken from the index of flagged peaks or all peaks. Default = True

	Return type

	numpy array

	
has_attribute(attr_name: str)

	Checks whether there exists an attribute in the table.

	Parameters

	attr_name – The attribute name for checking

	Return type

	bool

	
insert_peak(peak_value: Sequence)

	Insert a new peak.

	Parameters

	peak_value – The values of the new peak. Must contain values for all the attributes. It’s position depends
on the mz value, i.e., the 1st value of the input

	Return type

	PeakList object (self)

	
property metadata

	Property of the peaklist metadata.

	Getter

	Returns an access interface to the peaklist metadata object

	Type

	PeakList_Metadata object

	
property peaks

	Property of the attribute table.

	Getter

	Returns a deep copy of the flagged attribute table

	Type

	numpy structured array

	
remove_peak(peak_index: Union[int, Sequence[int]], flagged_only: bool = True)

	Remove an existing peak.

	Parameters

	
	peak_index – The index of the peak to remove

	flagged_only – Whether the index is for flagged peaks or all peaks. Default = True

	Return type

	PeakList object (self)

	
set_attribute(attr_name: str, attr_value: Sequence, flagged_only: bool = True, unsorted_mz: bool = False)

	Sets values to an existing attribute.

	Parameters

	
	attr_name – The attribute to set values

	attr_value – The new attribute values, It’s size must equals to PeakList.size
(if flagged_only == True), or PeakList.full_size (if flagged_only == False)

	flagged_only – Whether the attr_value is set to the flagged peaks or all peaks. Default = True

	unsorted_mz – Whether the attr_value contains unsorted mz values. This parameter is valid only when
attr_name == “mz”. Default = False

	Return type

	PeakList object (self)

	
set_peak(peak_index: int, peak_value: Sequence, flagged_only: bool = True)

	Sets values to a peak.

	Parameters

	
	peak_index – The index of the peak to set values

	peak_value – The new peak values. Must contain values for all the attributes (not including flags)

	flagged_only – Whether the peak_value is set to the index of flagged peaks or all peaks. Default = True

	Return type

	PeakList object (self)

>>> print(peaks)
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
30, 30, 30, False
40, 40, 40, True
>>> print(peaks.set_peak(2, [50, 50, 50], flagged_only = True))
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
30, 30, 30, False
50, 50, 50, True
>>> print(peaks.set_peak(2, [40, 40, 40], flagged_only = False))
mz, intensity, snr, flags
10, 10, 10, True
20, 20, 20, True
40, 40, 40, False
50, 50, 50, True

	
property shape

	Property of the peaklist attributes table shape.

	Getter

	Returns the attibutes table shape, i.e., peaks number x attributes number. The “flags” column does not count

	Type

	tuple

	
property size

	Property of the peaklist size.

	Getter

	Returns the flagged peaklist size

	Type

	int

	
sort_peaks_order()

	Sorts peaklist mz values into ascending order.

Note

This method will be called automatically every time the mz values are changed.

	
property tags

	Property of the peaklist tags.

	Getter

	Returns an access interface to the peaklist tags object

	Type

	PeakList_Tags object

	
to_df()

	Exports peaklist attribute table to Pandas DataFrame, including the flags.

	Return type

	pd.DataFrame

	
to_dict(dict_type: Callable[[Sequence], Mapping] = <class 'collections.OrderedDict'>) → Mapping

	Exports peaklist attribute table to a dictionary (mappable object), including the flags.

	Parameters

	dict_type – Result dictionary type, Default = OrderedDict

	Return type

	list

	
to_list()

	Exports peaklist attribute table to a list, including the flags.

	Return type

	list

	
to_str(delimiter: str = ', ')

	Exports peaklist attribute table to a string, including the flags. It can also be used inexplicitly.

	Return type

	str

peaklist_metadata

	
class dimspy.models.peaklist_metadata.PeakList_Metadata

	Bases: dict

The PeakList_Metadata class.

Dictionary-like container for PeakList metadata storage.

	Parameters

	
	args – Iterable object of key-value pairs

	kwargs – Metadata key-value pairs

>>> PeakList_Metadata([('name', 'sample_1'), ('qc', False)])
>>> PeakList_Metadata(name = 'sample_1', qc = False)

metadata attributes can be accessed in both dictionary-like and property-like manners.

>>> meta = PeakList_Metadata(name = 'sample_1', qc = False)
>>> meta['name']
sample_1
>>> meta.qc
False
>>> del meta.qc
>>> meta.has_key('qc')
False

Warning

The __getattr__, __setattr__, and __delattr__ methods are overrided. DO NOT assign a metadata object
to another metadata object, e.g., metadata.metadata.attr = value.

peaklist_tags

	
class dimspy.models.peaklist_tags.PeakList_Tags(*args, **kwargs)

	Bases: object

The PeakList_Tags class.

Container for both typed and untyped tags. This class is mainly used in PeakList and PeakMatrix classes for sample filtering.
For a PeakList the tag types must be unique, but not the tag values (unless they are untyped).
For instance, PeakList can have tags batch = 1 and plate = 1, but not batch = 1 and batch = 2, or (untyped) 1 and (untyped) 1.
Single value will be treated as untyped tag.

	Parameters

	
	args – List of untyped tags

	kwargs – List of typed tags. Only one tag value can be assigned to a specific tag type

>>> PeakList_Tags('untyped_tag1', Tag('untyped_tag2'), Tag('typed_tag', 'tag_type'))
>>> PeakList_Tags(tag_type1 = 'tag_value1', tag_type2 = 'tag_value2')

	
add_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] = None)

	Adds typed or untyped tag.

	Parameters

	
	tag – Tag or tag value to add

	tag_type – Type of the tag value

>>> tags = PeakList_Tags()
>>> tags.add_tag('untyped_tag1')
>>> tags.add_tag(Tag('typed_tag1', 'tag_type1'))
>>> tags.add_tag(tag_type2 = 'typed_tag2')

	
drop_all_tags()

	Drops all tags, both typed and untyped.

	
drop_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] = None)

	Drops typed and untyped tag.

	Parameters

	
	tag – Tag or tag value to drop

	tag_type – Type of the tag value

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> tags.drop_tag(Tag('tag_value1', 'tag_type1'))
>>> print(tags)
untyped_tag1

	
drop_tag_type(tag_type: Optional[str] = None)

	Drops the tag with the given type.

	Parameters

	tag_type – Tag type to drop, None (untyped) may drop multiple tags

	
has_tag(tag: Union[int, float, str, dimspy.models.peaklist_tags.Tag], tag_type: Optional[str] = None)

	Checks whether there exists a specific tag.

	Parameters

	
	tag – The tag for checking

	tag_type – The type of the tag

	Return type

	bool

>>> tags = PeakList_Tags('untyped_tag1', Tag('tag_value1', 'tag_type1'))
>>> tags.has_tag('untyped_tag1')
True
>>> tags.has_tag('typed_tag1')
False
>>> tags.has_tag(Tag('tag_value1', 'tag_type1'))
True
>>> tags.has_tag('tag_value1', 'tag_type1')
True

	
has_tag_type(tag_type: Optional[str] = None)

	Checks whether there exists a specific tag type.

	Parameters

	tag_type – The tag type for checking, None indicates untyped tags

	Return type

	bool

	
tag_of(tag_type: Optional[str] = None)

	Returns tag value of the given tag type, or tuple of untyped tags if tag_type is None.

	Parameters

	tag_type – Valid tag type, None for untyped tags

	Return type

	Tag, or None if tag_type not exists

	
property tag_types

	Property of included tag types. None indicates untyped tags included.

	Getter

	Returns a set containing all the tag types of the typed tags

	Type

	set

	
property tag_values

	Property of included tag values. Same tag values will be merged

	Getter

	Returns a set containing all the tag values, both typed and untyped tags

	Type

	set

	
property tags

	Property of all included tags.

	Getter

	Returns a tuple containing all the tags, both typed and untyped

	Type

	tuple

	
to_list()

	Exports tags to a list. Each element is a tuple of (tag value, tag type).

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> tags.to_list()
[('untyped_tag1', None), ('tag_value1', 'tag_type1')]

	Return type

	list

	
to_str()

	Exports tags to a string. It can also be used inexplicitly as

>>> tags = PeakList_Tags('untyped_tag1', tag_type1 = 'tag_value1')
>>> print(tags)
untyped_tag1, tag_type1:tag_value1

	Return type

	str

	
property typed_tags

	Property of included typed tags.

	Getter

	Returns a tuple containing all the typed tags

	Type

	tuple

	
property untyped_tags

	Property of included untyped tags.

	Getter

	Returns a tuple containing all the untyped tags

	Type

	tuple

	
class dimspy.models.peaklist_tags.Tag(value: Union[int, float, str, dimspy.models.peaklist_tags.Tag], ttype: Optional[str] = None)

	Bases: object

The Tag class.

This class is mainly used in PeakList and PeakMatrix classes for sample filtering.

	Parameters

	
	value – Tag value, must be number (int, float), string (ascii, unicode), or Tag object (ignore ttype setting)

	ttype – Tag type, must be string or None (untyped), default = None

Single value will be treated as untyped tag:

>>> tag = Tag(1)
>>> tag == 1
True
>>> tag = Tag(1, 'batch')
>>> tag == 1
False

	
property ttype

	Property of tag type. None indicates untyped tag.

	Getter

	Returns the type of the tag

	Setter

	Set the tag type, must be None or string

	Type

	None, str, unicode

	
property typed

	Property to decide if the tag is typed or untyped.

	Getter

	Returns typed status of the tag

	Type

	bool

	
property value

	Property of tag value.

	Getter

	Returns the value of the tag

	Setter

	Set the tag value, must be number or string

	Type

	int, float, str, unicode

peak_matrix

	
class dimspy.models.peak_matrix.PeakMatrix(peaklist_ids: Sequence[str], peaklist_tags: Sequence[dimspy.models.peaklist_tags.PeakList_Tags], peaklist_attributes: Sequence[Tuple[str, Any]])

	Bases: object

The PeakMatrix class.

Stores aligned mass spectrometry peaks matrix data. It requires IDs, tags, and attributes from the source peak
lists. It uses tags based mask to “hide” the unrelated samples for convenient processing. It utilises the
automatically managed flags to “remove” peaks without actually delete them. Therefore the filterings on the peaks
are traceable. Normally, PeakMatrix object is created by functions e.g. align_peaks() rather than manual.

	Parameters

	
	peaklist_ids – The IDs of the source peak lists

	peaklist_tags – The tags (PeakList_Tags) of the source peak lists

	peaklist_attributes – The attributes of the source peak lists. Must be a list or tuple in the format of
[(attr_name, attr_matrix), …], where attr_name is name of the attribute, and attr_matrix is the vertically
stacked arrtibute values in the shape of samples x peaks. The order of the attributes will be kept in the
PeakMatrix. The first two attributes must be “mz” and “intensity”.

>>> pids = [pl.ID for pl in peaklists]
>>> tags = [pl.tags for pl in peaklists]
>>> attrs = [(attr_name, np.vstack([pl[attr_name] for pl in peaklists])) for attr_name in peaklists[0].attributes]
>>> pm = PeakMatrix(pids, tags, attrs)

Internally the attribute data is stored in OrderedDict as a list of matrix. An attribute matrix can be illustrated
as follows, in which the mask and flags are the same for all attributes. The final row “flags” is automatically
calculated based on the manually added flags. It decides which peaks are “removed” i.e. unflagged. Particularly,
the “–” indicates no peak in that sample can be aligned into the mz value.

attribute: “mz”

	mask

	peak_1

	peak_2

	peak_3

	…

	False

	12.7

	14.9

	21.0

	…

	True

	–

	15.1

	21.1

	False

	12.1

	14.7

	–

	False

	12.9

	14.8

	20.9

	…

	
	
	
	

	flag_1

	True

	False

	True

	…

	flag_2

	True

	True

	False

	flags*

	True

	False

	False

Warning

Removing a flag may change the overall “flags”, and cause the unflagged peaks to be flagged again. As
most the processes are applied only on the flagged peaks, these peaks, if the others have gone through such process,
may have incorrect values.

In principle, setting a flag attribute should be considered as an irreversible process.

Different from the flags, mask should be considered as a more temporary way to hide the unrelated samples. A masked
sample (row) will not be used for processing, but its data is still in the attribute matrix. For this reason,
the mask_peakmatrix, unmask_peakmatrix, and unmask_all_peakmatrix statements are provided as a more flexible way
to set / unset the mask.

	
add_flag(flag_name: str, flag_values: Sequence[bool], flagged_only: bool = True)

	Adds a flag to the peak matrix peaks.

	Parameters

	
	flag_name – name of the flag, it must be unique and not equal to “flags”

	flag_values – values of the flag. It must have a length of pm.shape[1] if flagged_only = True, or
pm.full_shape[1] if flagged_only = False

	flagged_only – whether to set the flagged peaks only. Default = True, and the values of the unflagged peaks
are set to False

The overall flags property will be automatically recalculated.

	
attr_matrix(attr_name: str, flagged_only: bool = True)

	Obtains an existing attribute matrix.

	Parameters

	
	attr_name – name of the target attribute

	flagged_only – whether to return the flagged values only. Default = True

	Return type

	numpy array

	
attr_mean_vector(attr_name: str, flagged_only: bool = True)

	Obtains the mean array of an existing attribute matrix.

	Parameters

	
	attr_name – name of the target attribute

	flagged_only – whether to return the mean array of the flagged values only. Default = True

	Return type

	numpy array

Noting that only the “present” peaks will be used for mean values calculation. If the attribute matrix has a
string / unicode data type, the values in each column will be concatenated.

	
property attributes

	Property of the attribute names.

	Getter

	returns a tuple including the names of the attribute matrix

	Type

	tuple

	
drop_flag(flag_name: str)

	Drops a existing flag from the peak matrix.

	Parameters

	flag_name – name of the flag to drop. It must exist and not equal to “flags”

The overall flags property will be automatically recalculated.

	
extract_peaklist(peaklist_id: str)

	Extracts one peaklist from the peak matrix.

	Parameters

	peaklist_id – ID of the peaklist to extract

	Return type

	PeakList object

Only the “present” peaks will be included in the result peaklist.

	
extract_peaklists()

	Extracts all peaklists from the peak matrix.

	Return type

	list

	
property flag_names

	Property of the flag names.

	Getter

	returns a tuple including the names of the manually set flags

	Type

	tuple

	
flag_values(flag_name: str)

	Obtains values of an existing flag.

	Parameters

	flag_name – name of the target flag. It must exist and not equal to “flags”

	Return type

	numpy array

	
property flags

	Property of the flags.

	Getter

	returns a deep copy of the flags array

	Type

	numpy array

	
property fraction

	Property of the fraction array.

	Getter

	returns the fraction array, indicating the ratio of present peaks on each mz value

	Type

	numpy array

>>> print pm.present
array([3, 4, 2, 3, 3])
>>> print pm.shape[0]
4
>>> print pm.fraction
array([0.75, 1.0, 0.5, 0.75, 0.75])

	
property full_shape

	Property of the peak matrix full shape.

	Getter

	returns the full shape of the attribute matrix, i.e., ignore mask and flags

	Type

	tuple

	
property intensity_matrix

	Property of the intensity matrix.

	Getter

	returns the intensity attribute matrix, unmasked and flagged values only

	Type

	numpy array

	
property intensity_mean_vector

	Property of the intensity mean values array.

	Getter

	returns the mean values array of the intensity attribute matrix, unmasked and flagged values only

	Type

	numpy array

	
is_empty()

	Checks whether the peak matrix is empty under the current mask and flags.

	Return type

	bool

	
property mask

	Property of the mask.

	Getter

	returns a deep copy of the mask array

	Setter

	sets the mask array. Provide None to unmask all samples

	Type

	numpy array

	
mask_tags(*args, **kwargs)

	Masks samples with particular tags.

	Parameters

	
	args – tags or untyped tag values for masking

	kwargs – typed tags for masking

	override – whether to override the current mask, default = False

	Return type

	PeakMatrix object (self)

This function will mask samples with ALL the tags. To match ANY of the tags, use cascade form instead.

>>> pm.mask_tags('qc', plate = 1)
(will mask all QC samples on plate 1)
>>> pm.mask_tags('qc').mask_tags(plate = 1)
(will mask QC samples and all samples on plate 1)

	
property missing_values

	Property of the missing values array.

	Getter

	returns the missing values array, indicating the number of unaligned peaks on each sample

	Type

	numpy array

>>> print pm.present_matrix
array([[True, True, True, True, False],
 [True, True, False, False, True],
 [True, True, True, True, True],
 [False, True, False, True, True],])
>>> print pm.missing_values
array([1, 2, 0, 2])

	
property mz_matrix

	Property of the mz matrix.

	Getter

	returns the mz attribute matrix, unmasked and flagged values only

	Type

	numpy array

	
property mz_mean_vector

	Property of the mz mean values array.

	Getter

	returns the mean values array of the mz attribute matrix, unmasked and flagged values only

	Type

	numpy array

	
property occurrence

	Property of the occurrence array.

	Getter

	returns the occurrence array, indicating the total number of peaks (including peaks in the same sample)
aliged in each mz value. This property is valid only when the intra_count attribute matrix is available

	Type

	numpy array

>>> print pm.attr_matrix('intra_count')
array([[2, 1, 1, 1, 0],
 [1, 1, 0, 0, 1],
 [1, 3, 1, 2, 1],
 [0, 1, 0, 1, 1],])
>>> print pm.occurrence
array([4, 6, 2, 4, 3])

	
property peaklist_ids

	Property of the source peaklist IDs.

	Getter

	returns a tuple including the IDs of the source peaklists

	Type

	tuple

	
property peaklist_tag_types

	Property of the source peaklist tag types.

	Getter

	returns a tuple including the types of the typed tags of the source peaklists

	Type

	set

	
property peaklist_tag_values

	Property of the source peaklist tag values.

	Getter

	returns a tuple including the values of the source peaklists tags, both typed and untyped

	Type

	set

	
property peaklist_tags

	Property of the source peaklist tags.

	Getter

	returns a tuple including the Peaklist_Tags objects of the source peaklists

	Type

	tuple

	
property present

	Property of the present array.

	Getter

	returns the present array, indicating how many peaks are aligned in each mz value

	Type

	numpy array

	
property present_matrix

	Property of the present matrix.

	Getter

	returns the present matrix, indicating whether a sample has peak(s) aligned in each mz value

	Type

	numpy array

>>> print pm.present_matrix
array([[True, True, True, True, False],
 [True, True, False, False, True],
 [True, True, True, True, True],
 [False, True, False, True, True],])
>>> print pm.present
array([3, 4, 2, 3, 3])

	
property(prop_name: str, flagged_only: bool = True)

	Obtains an existing attribute matrix.

	Parameters

	
	prop_name – name of the target property. Valid properties include ‘present’, ‘present_matrix’, ‘fraction’,
‘missing_values’, ‘occurrence’, and ‘purity’

	flagged_only – whether to return the flagged values only. Default = True

	Return type

	numpy array

	
property purity

	Property of the purity level array.

	Getter

	returns the purity array, indicating the ratio of only one peak in each sample being aligned in each mz
value. This property is valid only when the intra_count attribute matrix is available

	Type

	numpy array

>>> print pm.attr_matrix('intra_count')
array([[2, 1, 1, 1, 0],
 [1, 1, 0, 0, 1],
 [1, 3, 1, 2, 1],
 [0, 1, 0, 1, 1],])
>>> print pm.purity
array([0.667, 0.75, 1.0, 0.667, 1.0])

	
remove_empty_peaks()

	Removes empty peaks from the peak matrix.

Empty peaks are peaks with not valid m/z or intensity value over the samples. They may occur after removing
an entire sample from the peak matrix, e.g., remove the blank samples in the blank filter.

	Return type

	PeakMatrix object (self)

	
remove_peaks(peak_ids, flagged_only: bool = True)

	Removes peaks from the peak matrix.

	Parameters

	
	peak_ids – the indices of the peaks to remove

	flagged_only – whether the indices are for flagged peaks or all peaks. Default = True

	Return type

	PeakMatrix object (self)

	
remove_samples(sample_ids, masked_only: bool = True)

	Removes samples from the peak matrix.

	Parameters

	
	sample_ids – the indices of the samples to remove

	masked_only – whether the indices are for unmasked samples or all samples. Default = True

	Return type

	PeakMatrix object (self)

	
rsd(*args, **kwargs)

	Calculates relative standard deviation (RSD) array.

	Parameters

	
	args – tags or untyped tag values for RSD calculation, no value = calculate over all samples

	kwargs – typed tags for RSD calculation, no value = calculate over all samples

	on_attr – calculate RSD on given attribute. Default = “intensity”

	flagged_only – whether to calculate on flagged peaks only. Default = True

	Type

	numpy array

The RSD is calculated as:

>>> rsd = std(pm.intensity_matrix, axis = 0, ddof = 1) / mean(pm.intensity_matrix, axis = 0) * 100

Noting that the means delta degrees of freedom (ddof) is set to 1 for standard deviation calculation.
Moreover, only the “present” peaks will be used for calculation. If a column has less than 2 peaks, the
corresponding rsd value will be set to np.nan.

	
property shape

	Property of the peak matrix shape.

	Getter

	returns the shape of the attribute matrix

	Type

	tuple

	
tags_of(tag_type: Optional[str] = None)

	Obtains tags of the peaklist_tags with particular tag type.

	Parameters

	tag_type – the type of the returning tags. Provide None to obtain untyped tags

	Return type

	tuple

	
to_peaklist(ID: str)

	Averages the peak matrix into a single peaklist.

	Parameters

	ID – ID of the merged peaklist

	Return type

	PeakList object

Only the “present” peaks will be included in the result peaklist. The new peaklist will only contain the
following attributes: mz, intensity, present, fraction, rsd, occurence, and purity.

Use unmask statement to calculate the peaklist for a particular group of samples:

>>> with unmask_peakmatrix(pm, 'Sample') as m: pkl = m.to_peaklist('averaged_peaklist')

Or use mask statement to exclude a particular group of samples:

>>> with mask_peakmatrix(pm, 'QC') as m: pkl = m.to_peaklist('averaged_peaklist')

	
to_str(attr_name: str = 'intensity', delimiter: str = '\t', samples_in_rows: bool = True, comprehensive: bool = True, rsd_tags: Sequence = ())

	Exports the peak matrix to a string.

	Parameters

	
	attr_name – name of the attribute matrix for exporting. Default = ‘intensity’

	delimiter – delimiter to separate the matrix. Default = ‘ ‘, i.e., TSV format

	samples_in_rows – whether or not the samples are stored in rows. Default = True

	comprehensive – whether to include comprehensive info, e.g., mask, flags, present, rsd etc. Default = True

	rsd_tags – peaklist tags for RSD calculation. Default = (), indicating only the overall RSD is included

	Return type

	str

	
unmask_tags(*args, **kwargs)

	Unmasks samples with particular tags.

	Parameters

	
	args – tags or untyped tag values for unmasking

	kwargs – typed tags for unmasking

	override – whether to override the current mask, default = False

	Return type

	PeakMatrix object (self)

This function will unmask samples with ALL the tags. To unmask ANY of the tags, use cascade form instead.

>>> pm.mask = [True] * pm.full_shape[0]
>>> pm.unmask_tags('qc', plate = 1)
(will unmask all QC samples on plate 1)
>>> pm.unmask_tags('qc').unmask_tags(plate = 1)
(will unmask QC samples and all samples on plate 1)

	
class dimspy.models.peak_matrix.mask_all_peakmatrix(pm: dimspy.models.peak_matrix.PeakMatrix)

	Bases: object

The mask_all_peakmatrix statement.

Temporary mask all the peak matrix samples. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

	Parameters

	pm – the target peak matrix

	Return type

	PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with mask_all_peakmatrix(pm) as m: print m.peaklist_ids
()
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

	
class dimspy.models.peak_matrix.mask_peakmatrix(pm: dimspy.models.peak_matrix.PeakMatrix, *args, **kwargs)

	Bases: object

The mask_peakmatrix statement.

Temporary mask the peak matrix with particular tags. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

	Parameters

	
	pm – the target peak matrix

	override – whether to override the current mask, default = True

	args – target tag values, both typed and untyped

	kwargs – target typed tag types and values

	Return type

	PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with mask_peakmatrix(pm., 'qc') as m: print m.peaklist_ids
('sample_1', 'sample_2', 'sample_3', 'sample_4')
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

	
class dimspy.models.peak_matrix.unmask_all_peakmatrix(pm: dimspy.models.peak_matrix.PeakMatrix)

	Bases: object

The unmask_all_peakmatrix statement.

Temporary unmask all the peak matrix samples. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

	Parameters

	pm – the target peak matrix

	Return type

	PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with unmask_all_peakmatrix(pm) as m: print m.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

	
class dimspy.models.peak_matrix.unmask_peakmatrix(pm: dimspy.models.peak_matrix.PeakMatrix, *args, **kwargs)

	Bases: object

The unmask_peakmatrix statement.

Temporary unmask the peak matrix with particular tags. Within the statement the samples can be motified or removed.
After leaving the statement the original mask will be recoverd.

	Parameters

	
	pm – the target peak matrix

	override – whether to override the current mask, default = True

	args – target tag values, both typed and untyped

	kwargs – target typed tag types and values

	Return type

	PeakMatrix object

>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')
>>> with unmask_peakmatrix(pm, 'qc') as m: print m.peaklist_ids
('qc_1', 'qc_2') # no need to set pm.mask to True
>>> print pm.peaklist_ids
('sample_1', 'sample_2', 'qc_1', 'sample_3', 'sample_4', 'qc_2')

portals

mzml_portal

	
class dimspy.portals.mzml_portal.Mzml(filename: Union[str, _io.BytesIO], **kwargs)

	Bases: object

mzML portal

	
headers() → collections.OrderedDict

	Get all unique header or filter strings and associated scan ids.
:return: Dictionary

	
scan_ids() → collections.OrderedDict

	Get all scan ids and associated headers or filter strings.
:return: Dictionary

	
peaklist(scan_id, function_noise='median') → dimspy.models.peaklist.PeakList

	Create a peaklist object for a specific scan id.
:param scan_id: Scan id
:param function_noise: Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	Returns

	PeakList object

	
peaklists(scan_ids, function_noise='median') → Sequence[dimspy.models.peaklist.PeakList]

	Create a list of peaklist objects for each scan id in the list.
:param scan_ids: List of scan ids

	Parameters

	function_noise – Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo Fisher
Scientific’s msFileReader library. This option should only be applied when you are processing .RAW files.

	Returns

	List of PeakList objects

	
tics() → collections.OrderedDict

	Get all TIC values and associated scan ids
:return: Dictionary

	
ion_injection_times() → collections.OrderedDict

	Get all ion injection time values and associated scan ids
:return: Dictionary

	
scan_dependents() → list

	Get a nested list of scan id pairs. Each pair represents a fragementation event.
:return: List

	
close()

	Close the reader/file object
:return: None

thermo_raw_portal

	
dimspy.portals.thermo_raw_portal.mz_range_from_header(h: str) → list

	Extract the m/z range from a header or filterstring

	Parameters

	h – str

	Returns

	Sequence[float, float]

	
class dimspy.portals.thermo_raw_portal.ThermoRaw(filename)

	Bases: object

ThermoRaw portal

	
headers() → collections.OrderedDict

	Get all unique header or filter strings and associated scan ids.
:return: Dictionary

	
scan_ids() → collections.OrderedDict

	Get all scan ids and associated headers or filter strings.
:return: Dictionary

	
peaklist(scan_id, function_noise='noise_packets') → dimspy.models.peaklist.PeakList

	Create a peaklist object for a specific scan id.
:param scan_id: Scan id
:param function_noise: Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo Fisher
Scientific’s msFileReader library. This option should only be applied when you are processing .RAW files.

	Returns

	PeakList object

	
peaklists(scan_ids, function_noise='noise_packets') → Sequence[dimspy.models.peaklist.PeakList]

	Create a list of peaklist objects for each scan id in the list.
:param scan_ids: List of scan ids

	Parameters

	function_noise – Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo Fisher
Scientific’s msFileReader library. This option should only be applied when you are processing .RAW files.

	Returns

	List of PeakList objects

	
tics() → collections.OrderedDict

	Get all TIC values and associated scan ids
:return: Dictionary

	
ion_injection_times() → collections.OrderedDict

	Get all TIC values and associated scan ids
:return: Dictionary

	
scan_dependents() → list

	Get a nested list of scan id pairs. Each pair represents a fragementation event.
:return: List

	
close()

	Close the reader/file object
:return: None

txt_portal

	
dimspy.portals.txt_portal.save_peaklist_as_txt(pkl: dimspy.models.peaklist.PeakList, filename: str, *args, **kwargs)

	Saves a peaklist object to a plain text file.

	Parameters

	
	pkl – the target peaklist object

	filename – path to a new text file

	args – arguments to be passed to PeakList.to_str

	kwargs – keyword arguments to be passed to PeakList.to_str

	
dimspy.portals.txt_portal.load_peaklist_from_txt(filename: str, ID: any, delimiter: str = ', ', flag_names: str = 'auto', has_flag_col: bool = True)

	Loads a peaklist from plain text file.

	Parameters

	
	filename – Path to an exiting text-based peaklist file

	ID – ID of the peaklist

	delimiter – Delimiter of the text lines. Default = ‘,’, i.e., CSV format

	flag_names – Names of the flag attributes. Default = ‘auto’, indicating all the attribute names ends
with “_flag” will be treated as flag attibute. Provide None to indicate no flag attributes

	has_flag_col – Whether the text file contains the overall “flags” column. If True, it’s values will be
discarded. The overall flags of the new peaklist will be calculated automatically. Default = True

	Return type

	PeakList object

	
dimspy.portals.txt_portal.save_peak_matrix_as_txt(pm: dimspy.models.peak_matrix.PeakMatrix, filename: str, *args, **kwargs)

	Saves a peak matrix in plain text file.

	Parameters

	
	pm – The target peak matrix object

	filename – Path to a new text file

	args – Arguments to be passed to PeakMatrix.to_str

	kwargs – Keyword arguments to be passed to PeakMatrix.to_str

	
dimspy.portals.txt_portal.load_peak_matrix_from_txt(filename: str, delimiter: str = '\t', samples_in_rows: bool = True, comprehensive: str = 'auto')

	Loads a peak matrix from plain text file.

	Parameters

	
	filename – Path to an exiting text-based peak matrix file

	delimiter – Delimiter of the text lines. Default = ‘ ‘, i.e., TSV format

	samples_in_rows – Whether or not the samples are stored in rows. Default = True

	comprehensive – Whether the input is a ‘comprehensive’ or ‘simple’ version of the matrix. Default = ‘auto’, i.e., auto detect

	Return type

	PeakMatrix object

hdf5_portal

	
dimspy.portals.hdf5_portal.save_peaklists_as_hdf5(pkls: Sequence[dimspy.models.peaklist.PeakList], filename: str, compatibility_mode: bool = False)

	Saves multiple peaklists in a HDF5 file.

	Parameters

	
	pkls – The target list of peaklist objects

	filename – Path to a new HDF5 file

	compatibility_mode – Change mode to read previous DIMSpy v1.* based HDF5 file

To incorporate with different dtypes in the attribute matrix, this portal converts all the arribute values
into fix-length strings for HDF5 data tables storage. The order of the peaklists will be retained.

	
dimspy.portals.hdf5_portal.load_peaklists_from_hdf5(filename: str, compatibility_mode: bool = False)

	Loads a list of peaklist objects from a HDF5 file.

	Parameters

	
	filename – Path to a HDF5 file

	compatibility_mode – Change mode to read previous DIMSpy v1.* based HDF5 file

	Return type

	Sequence[PeakList]

The values in HDF5 data tables are automatically converted to their original dtypes before loading in the peaklist.

	
dimspy.portals.hdf5_portal.save_peak_matrix_as_hdf5(pm: dimspy.models.peak_matrix.PeakMatrix, filename: str, compatibility_mode: bool = False)

	Saves a peak matrix object to a HDF5 file.

	Parameters

	
	pm – The target peak matrix object

	filename – Path to a new HDF5 file

The order of the attributes and flags will be retained.

	
dimspy.portals.hdf5_portal.load_peak_matrix_from_hdf5(filename: str, compatibility_mode: bool = False)

	Loads a peak matrix from a HDF5 file.

	Parameters

	filename – Path to an existing HDF5 file

	Return type

	PeakMatrix object

paths

	
dimspy.portals.paths.sort_ms_files_by_timestamp(ps)

	Sort a set directory of .mzml or .raw files

	Parameters

	ps – List of paths

:return List

	
dimspy.portals.paths.validate_and_sort_paths(source, tsv)

	Validate and sort a set (i.e. directory or hdf5 file) of .mzml or .raw files.

	Parameters

	
	tsv – Path to tab-separated file

	source – Path to a Path to the .hdf5 file to read from.

	Returns

	List

process

peak_alignment

	
dimspy.process.peak_alignment.align_peaks(peaks: Sequence[dimspy.models.peaklist.PeakList], ppm: float = 2.0, block_size: int = 5000, fixed_block: bool = True, edge_extend: Union[int, float] = 10, ncpus: Optional[int] = None)

	Cluster and align peaklists into a peak matrix.

	Parameters

	
	peaks – List of peaklists for alignment

	ppm – The hierarchical clustering cutting height, i.e., ppm range for each aligned mz value. Default = 2.0

	block_size – number peaks in each centre clustering block. This can be a exact or approximate number depends
on the fixed_block parameter. Default = 5000

	fixed_block – Whether the blocks contain fixed number of peaks. Default = True

	edge_extend – Ppm range for the edge blocks. Default = 10

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using as many as possible

	Return type

	PeakMatrix object

[image: _images/alignment.png]

This function uses hierarchical clustering to align the mz values of the input peaklists. The alignment “width” is
decided by the parameter of ppm. Due to a large number of peaks, this function splits them into blocks with fixed
or approximate length, and clusters in a parallel manner on multiple CPUs. When running, the edge blocks are
clustered first to prevent separating the same peak into two adjacent centre blocks. The size of the edge blocks is
decided by edge_extend. The clustering of centre blocks is conducted afterwards.

After merging the clustering results, all the attributes (mz, intensity, snr, etc.) are aligned into matrix
accordingly. If multiple peaks from the same sample are clustered into one mz value, their attributes are averaged
(for real value attributes e.g. mz and intensity) or concatenated (string, unicode, or bool attributes). The flag
attributes are ignored. The number of these overlapping peaks is recorded in a new intra_count attribute matrix.

peak_filters

	
dimspy.process.peak_filters.filter_attr(pl: dimspy.models.peaklist.PeakList, attr_name: str, max_threshold: Union[int, float, None] = None, min_threshold: [<class 'int'>, <class 'float'>, None] = None, flag_name: Optional[str] = None, flag_index: Optional[int] = None)

	Peaklist attribute values filter.

	Parameters

	
	pl – The target peaklist

	attr_name – Name of the target attribute

	max_threshold – Maximum threshold. A peak will be unflagged if the value of it’s attr_name is larger than the
threshold. Default = None, indicating no threshold

	min_threshold – Minimum threshold. A peak will be unflagged if the value of it’s attr_name is smaller than the
threshold. Default = None, indicating no threshold

	flag_name – Name of the new flag attribute. Default = None, indicating using attr_name + ‘_flag’

	flag_index – Index of the new flag to be inserted into the peaklist. Default = None

	Return type

	PeakList object

This filter accepts real value attributes only.

	
dimspy.process.peak_filters.filter_ringing(pl: dimspy.models.peaklist.PeakList, threshold: float, bin_size: Union[int, float] = 1.0, flag_name: str = 'ringing_flag', flag_index: Optional[int] = None)

	Peaklist ringing filter.

	Parameters

	
	pl – The target peaklist

	threshold – Intensity threshold ratio

	bin_size – size of the mz chunk for intensity filtering. Default = 1.0 ppm

	flag_name – Name of the new flag attribute. Default = ‘ringing_flag’

	flag_index – Index of the new flag to be inserted into the peaklist. Default = None

	Return type

	PeakList object

This filter will split the mz values into bin_size chunks, and search the highest intensity value for each chunk.
All other peaks, if it’s intensity is smaller than threshold x the highest intensity in that chunk, will be unflagged.

	
dimspy.process.peak_filters.filter_mz_ranges(pl: dimspy.models.peaklist.PeakList, mz_ranges: Sequence[Tuple[float, float]], flag_name: str = 'mz_ranges_flag', flagged_only: bool = False, flag_index: Optional[int] = None)

	Peaklist mz range filter.

	Parameters

	
	pl – The target peaklist

	mz_ranges – The mz ranges to remove. Must be in the format of [(mz_min1, mz_max2), (mz_min2, mz_max2), …]

	flag_name – Name of the new flag attribute. Default = ‘mz_range_remove_flag’

	flag_index – Index of the new flag to be inserted into the peaklist. Default = None

	Return type

	PeakList

This filter will remove all the peaks whose mz values are within any of the ranges in the mz_remove_rngs.

	
dimspy.process.peak_filters.filter_rsd(pm: dimspy.models.peak_matrix.PeakMatrix, rsd_threshold: Union[int, float], qc_tag: Any, on_attr: str = 'intensity', flag_name: str = 'rsd_flag')

	PeakMatrix RSD filter.

	Parameters

	
	pm – The target peak matrix

	rsd_threshold – Threshold of the RSD of the QC samples

	qc_tag – Tag (label) to unmask qc samples

	on_attr – Calculate RSD on given attribute. Default = “intensity”

	flag_name – Name of the new flag. Default = ‘rsd_flag’

	Return type

	PeakMatrix

This filter will calculate the RSD values of the QC samples. A peak with a QC RSD value larger than the
threshold will be unflagged.

	
dimspy.process.peak_filters.filter_fraction(pm: dimspy.models.peak_matrix.PeakMatrix, fraction_threshold: float, within_classes: bool = False, class_tag_type: Any = None, flag_name: str = 'fraction_flag')

	PeakMatrix fraction filter.

	Parameters

	
	pm – The target peak matrix

	fraction_threshold – Threshold of the sample fractions

	within_classes – Whether to calculate the fraction array within each class. Default = False

	class_tag_type – Tag type to unmask samples within the same class (e.g. “classLabel”). Default = None

	flag_name – Name of the new flag. Default = ‘fraction_flag’

	Return type

	PeakMatrix object

This filter will calculate the fraction array over all samples or within each class (based on class_tag_type).
The peaks with a fraction value smaller than the threshold will be unflagged.

	
dimspy.process.peak_filters.filter_blank_peaks(pm: dimspy.models.peak_matrix.PeakMatrix, blank_tag: Any, fraction_threshold: Union[int, float] = 1, fold_threshold: Union[int, float] = 1, method: str = 'mean', rm_blanks: bool = True, flag_name: str = 'blank_flag')

	PeakMatrix blank filter.

	Parameters

	
	pm – The target peak matrix

	blank_tag – Tag (label) to mask blank samples. e.g Tag(“blank”, “classLabel”)

	fraction_threshold – Threshold of the sample fractions. Default = 1

	fold_threshold – Threshold of the blank sample intensity folds. Default = 1

	method – Method to calculate blank sample intensity array. Valid values include ‘mean’, ‘median’, and ‘max’.
Default = ‘mean’

	rm_blanks – Whether to remove (not mask) blank samples after filtering

	flag_name – Name of the new flag. Default = ‘blank_flag’

	Return type

	PeakMatrix object

This filter will calculate the intensity array of the blanks using the “method”, and compare with the
intensities of the other samples. If fraction_threshold% of the intensity values of a peak are smaller than the
blank intensities x fold_threshold, this peak will be unflagged.

scan_processing

	
dimspy.process.replicate_processing.remove_edges(pls_sd: Dict)

	Removes overlapping m/z regions of adjacent (SIM) windows / scan events.

	Parameters

	pls_sd – List of peaklist objects

	Returns

	List of peaklist objects

	
dimspy.process.replicate_processing.read_scans(fn: str, function_noise: str, min_scans: int = 1, filter_scan_events: Dict = None)

	Read, filter, group and sort scans based on the header / filter string
Helper function for ‘process_scans (tools module)’

	Parameters

	
	fn – Path to the .mzml or .raw file

	function_noise – Function to calculate the noise from each scan. The following options are available:

	median - the median of all peak intensities within a given scan is used as the noise value.

	mean - the unweighted mean average of all peak intensities within a given scan is used as the noise value.

	mad (Mean Absolute Deviation) - the noise value is set as the mean of the absolute differences between peak
intensities and the mean peak intensity (calculated across all peak intensities within a given scan).

	noise_packets - the noise value is calculated using the proprietary algorithms contained in Thermo Fisher
Scientific’s msFileReader library. This option should only be applied when you are processing .RAW files.

	min_scans – Minimum number of scans required for each m/z window or event within a raw/mzML data file.

	filter_scan_events – Include or exclude specific scan events, by default all ALL scan events will be
included. To include or exclude specific scan events use the following format of a dictionary.

>>> {"include":[[100, 300, "sim"]]} or {"include":[[100, 1000, "full"]]}

	Returns

	List of peaklist objects

	
dimspy.process.replicate_processing.average_replicate_scans(name: str, pls: Sequence[dimspy.models.peaklist.PeakList], ppm: float = 2.0, min_fraction: float = 0.8, rsd_thres: float = 30.0, rsd_on: str = 'intensity', block_size: int = 5000, ncpus: int = None)

	Align, filter and average replicate scans/peaklist
Helper function for ‘process_scans (tools module)’

	Parameters

	
	name – Name average peaklist

	pls – List of peaklists

	ppm – Maximum tolerated m/z deviation in parts per million.

	min_fraction – A numerical value from 0 to 1 that specifies the minimum proportion of scans a given mass
spectral peak must be detected in, in order for it to be kept in the output peaklist. Here, scans refers to
replicates of the same scan event type, i.e. if set to 0.33, then a peak would need to be detected in at least
1 of the 3 replicates of a given scan event type.

	rsd_thres – Relative standard deviation threshold - A numerical value equal-to or greater-than 0.
If greater than 0, then peaks whose intensity values have a percent relative standard deviation (otherwise termed
the percent coefficient of variation) greater-than this value are excluded from the output peaklist.

	rsd_on – Intensity or SNR

	block_size – Number peaks in each centre clustering block.

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all CPUs that are available

	Returns

	List of peaklists

	
dimspy.process.replicate_processing.average_replicate_peaklists(pls: Sequence[dimspy.models.peaklist.PeakList], ppm: float, min_peaks: int, rsd_thres: float = None, block_size: int = 5000, ncpus: int = None)

	Align, filter and average replicate peaklists.
Helper function for ‘replicate_filter (tools module)’

	Parameters

	
	pls – List of peaklists

	ppm – Maximum tolerated m/z deviation in parts per million.

	min_peaks – Minimum number of technical replicates (i.e. peaklists) a peak has to be present in.

	rsd_thres – Relative standard deviation threshold - A numerical value equal-to or greater-than 0.
If greater than 0, then peaks whose intensity values have a percent relative standard deviation (otherwise termed
the percent coefficient of variation) greater-than this value are excluded from the output peaklist.

	block_size – Number peaks in each centre clustering block.

	ncpus – Number of CPUs for parallel clustering. Default = None, indicating using all CPUs that are available

	Returns

	List of peaklists

	
dimspy.process.replicate_processing.join_peaklists(name: str, pls: Sequence[dimspy.models.peaklist.PeakList])

	Join/Merge peaklists (i.e. windows) with different m/z ranges.
Helper function for ‘process_scans (tools module)’

	Parameters

	
	name – Name newly created joined/merged peaklist

	pls – List of peaklists

	Returns

	Peaklist

Command Line Interface

$ dimspy --help

Executing dimspy version 2.0.0.
usage: __main__.py [-h]
 {process-scans,replicate-filter,align-samples,blank-filter,sample-filter,remove-samples,mv-sample-filter,merge-peaklists,get-peaklists,get-average-peaklist,hdf5-pm-to-txt,hdf5-pls-to-txt,create-sample-list,unzip,licenses}
 ...

Python package to process DIMS data

positional arguments:
 {process-scans,replicate-filter,align-samples,blank-filter,sample-filter,remove-samples,mv-sample-filter,merge-peaklists,get-peaklists,get-average-peaklist,hdf5-pm-to-txt,hdf5-pls-to-txt,create-sample-list,unzip,licenses}
 process-scans Process scans and/or stitch SIM windows.
 replicate-filter Filter irreproducible peaks from technical replicate
 peaklists.
 align-samples Align peaklists across samples.
 blank-filter Filter peaks across samples that are present in the
 blank samples.
 sample-filter Filter peaks based on certain reproducibility and
 sample class criteria.
 remove-samples Remove sample(s) from a peak matrix object or list of
 peaklist objects.
 mv-sample-filter Filter samples based on the percentage of missing
 values.
 merge-peaklists Merge peaklists from multiple lists of peaklist or
 peak matrix objects.
 get-peaklists Get peaklists from a peak matrix object.
 get-average-peaklist
 Get an average peaklist from a peak matrix object.
 hdf5-pm-to-txt Write HDF5 output (peak matrix) to text format.
 hdf5-pls-to-txt Write HDF5 output (peak lists) to text format.
 create-sample-list Create a sample list from a peak matrix object or list
 of peaklist objects.
 unzip Extract files from zip file
 licenses Show licenses DIMSpy and RawFileReader

optional arguments:
 -h, --help show this help message and exit

$ dimspy process-scans --help

Executing dimspy version 2.0.0b1.
usage: __main__.py process-scans [-h] -i source -o OUTPUT [-l FILELIST] -m
 {median,mean,mad,noise_packets} -s
 SNR_THRESHOLD [-p PPM] [-n MIN_SCANS]
 [-a MIN_FRACTION] [-d RSD_THRESHOLD] [-k]
 [-r RINGING_THRESHOLD]
 [-e start end scan_type]
 [-x start end scan_type] [-z start end]
 [-u REPORT] [-b BLOCK_SIZE] [-c NCPUS]

optional arguments:
 -h, --help show this help message and exit
 -i source, --input source
 Directory (*.raw, *.mzml or tab-delimited peaklist
 files), single *.mzml/*.raw file or zip archive
 (*.mzml only)
 -o OUTPUT, --output OUTPUT
 HDF5 file to save the peaklist objects to.
 -l FILELIST, --filelist FILELIST
 Tab-delimited file that include the name of the data
 files (*.raw or *.mzml) and meta data. Column names:
 filename, replicate, batch, injectionOrder,
 classLabel.
 -m {median,mean,mad,noise_packets}, --function-noise {median,mean,mad,noise_packets}
 Select function to calculate noise.
 -s SNR_THRESHOLD, --snr-threshold SNR_THRESHOLD
 Signal-to-noise threshold
 -p PPM, --ppm PPM Mass tolerance in Parts per million to group peaks
 across scans / mass spectra.
 -n MIN_SCANS, --min_scans MIN_SCANS
 Minimum number of scans required for each m/z range or
 event.
 -a MIN_FRACTION, --min-fraction MIN_FRACTION
 Minimum fraction a peak has to be present. Use 0.0 to
 not apply this filter.
 -d RSD_THRESHOLD, --rsd-threshold RSD_THRESHOLD
 Maximum threshold - relative standard deviation
 (Calculated for peaks that have been measured across a
 minimum of two scans).
 -k, --skip-stitching Skip the step where (SIM) windows are 'stitched' or
 'joined' together. Individual peaklists are generated
 for each window.
 -r RINGING_THRESHOLD, --ringing-threshold RINGING_THRESHOLD
 Ringing
 -e start end scan_type, --include-scan-events start end scan_type
 Scan events to select. E.g. 100.0 200.0 sim or 50.0
 1000.0 full
 -x start end scan_type, --exclude-scan-events start end scan_type
 Scan events to select. E.g. 100.0 200.0 sim or 50.0
 1000.0 full
 -z start end, --remove-mz-range start end
 M/z range(s) to remove. E.g. 100.0 102.0 or 140.0
 145.0.
 -u REPORT, --report REPORT
 Summary/Report of processed mass spectra
 -b BLOCK_SIZE, --block-size BLOCK_SIZE
 The size of each block of peaks to perform clustering
 on.
 -c NCPUS, --ncpus NCPUS
 Number of central processing units (CPUs).

Credits

DIMSpy was originally written by Ralf Weber and Albert Zhou and has been developed with the help of many others.
Thanks to everyone who has improved DIMSpy contributing code, features, bug reports (and fixes), and documentation.

Developers & Contributors

	Ralf J. M. Weber (r.j.weber@bham.ac.uk) - University of Birmingham (UK) [https://www.birmingham.ac.uk/staff/profiles/biosciences/weber-ralf.aspx]

	Jiarui (Albert) Zhou (j.zhou.3@bham.ac.uk) - University of Birmingham (UK) [http://www.birmingham.ac.uk/index.aspx], HIT Shenzhen (China) [http://www.hitsz.edu.cn]

	Thomas N. Lawson (t.n.lawson@bham.ac.uk) - University of Birmingham (UK) [http://www.birmingham.ac.uk/index.aspx]

	Martin R. Jones (martin.jones@eawag.ch) - Eawag (Switzerland) [https://www.eawag.ch/en/aboutus/portrait/organisation/staff/profile/martin-jones/show/]

Funding

	DIMSpy acknowledges support from the following funders:
	
	BBSRC, grant number BB/M019985/1

	European Commission’s H2020 programme, grant agreement number 654241

	Wellcome Trust, grant number 202952/Z/16/Z

Bugs and Issues

Please report any bugs that you find here [https://github.com/computational-metabolomics/dimspy/issues].
Or fork the repository on GitHub [https://github.com/computational-metabolomics/dimspy/]
and create a pull request (PR). We welcome all contributions, and we will help you to make
the PR if you are new to git.

Changelog

All notable changes to this project will be documented here. For more details changes please refer to github [https://github.com/computational-metabolomics/dimspy] commit history

DIMSpy v2.0.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v2.0.0]

Release date: 26 April 2020

	First stable Python 3 only release

	Refactor and improve HDF5 portal to save peaklists and/or peak matrices

	Add compatibility for previous HDF5 files (python 2 version of DIMSpy)

	Improve filelist handling

	mzML or raw files are ordered by timestamp if no filelist is provided (i.e. process_scans)

	Fix warnings (NaturalNameWarning, ResourceWarning, DeprecationWarning)

	Fix ‘blank filter’ bug (missing and/or zero values are excluded)

	Improve sub setting / filtering of scan events

	Optimise imports

	Increase coverage tests [https://codecov.io/gh/computational-metabolomics/dimspy]

	Improve documentation (Read the Docs [https://dimspy.readthedocs.io/en/latest/]), including docstrings

DIMSpy v1.4.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v1.4.0]

Release date: 2 October 2019

	Final Python 2 release

DIMSpy v1.3.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v1.3.0]

Release date: 26 November 2018

DIMSpy v1.2.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v1.2.0]

Release date: 29 May 2018

DIMSpy v1.1.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v1.1.0]

Release date: 19 February 2018

DIMSpy v1.0.0 [https://github.com/computational-metabolomics/dimspy/releases/tag/v1.0.0]

Release date: 10 December 2017

DIMSpy v0.1.0 (pre-release) [https://github.com/computational-metabolomics/dimspy/releases/tag/v0.1.0]

Release date: 11 July 2017

Citation

To cite DIMSpy please use the following publication.

Check Zenodo [https://zenodo.org/search?page=1&size=20&q=dimspy] for citing more up-to-date versions of DIMSpy if not listed here.

DIMSpy v2.0.0

Ralf J. M. Weber & Jiarui Zhou. (2020, April 24). DIMSpy: Python package for processing direct-infusion mass spectrometry-based metabolomics and lipidomics data (Version v2.0.0). Zenodo. http://doi.org/10.5281/zenodo.3764169

BibTeX

@software{ralf_j_m_weber_2020_3764169,
 author = {Ralf J. M. Weber and
 Jiarui Zhou},
 title = {{DIMSpy: Python package for processing direct-
 infusion mass spectrometry-based metabolomics and
 lipidomics data}},
 month = april,
 year = 2020,
 publisher = {Zenodo},
 version = {v2.0.0},
 doi = {10.5281/zenodo.3764169},
 url = {https://doi.org/10.5281/zenodo.3764169}
}

DIMSpy v1.4.0

Ralf J. M. Weber & Jiarui Zhou. (2019, October 2). DIMSpy: Python package for processing direct-infusion mass spectrometry-based metabolomics and lipidomics data (Version v1.4.0). Zenodo. http://doi.org/10.5281/zenodo.3764110

BibTeX

@software{ralf_j_m_weber_2019_3764110,
 author = {Ralf J. M. Weber and
 Jiarui Zhou},
 title = {{DIMSpy: Python package for processing direct-
 infusion mass spectrometry-based metabolomics and
 lipidomics data}},
 month = oct,
 year = 2019,
 publisher = {Zenodo},
 version = {v1.4.0},
 doi = {10.5281/zenodo.3764110},
 url = {https://doi.org/10.5281/zenodo.3764110}
}

License

DIMSpy is licensed under the GNU General Public License v3.0 (see LICENSE file [https://github.com/computational-metabolomics/dimspy/blob/master/LICENSE] for licensing information). Copyright © 2017 - 2020 Ralf Weber, Albert Zhou

Third-party licenses and copyright

RawFileReader reading tool. Copyright © 2016 by Thermo Fisher Scientific, Inc. All rights reserved. See RawFileReaderLicense [https://github.com/computational-metabolomics/dimspy/blob/master/RawFileReaderLicense.rst] for licensing information.
Using DIMSpy software for processing Thermo Fisher Scientific *.raw files implies the acceptance of the RawFileReader license terms.
Anyone receiving RawFileReader as part of a larger software distribution (in the current context, as part of DIMSpy) is considered an “end user” under
section 3.3 of the RawFileReader License, and is not granted rights to redistribute RawFileReader.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dimspy	

 	
 	
 dimspy.metadata	

 	
 	
 dimspy.models.peak_matrix	

 	
 	
 dimspy.models.peaklist	

 	
 	
 dimspy.models.peaklist_metadata	

 	
 	
 dimspy.models.peaklist_tags	

 	
 	
 dimspy.portals.hdf5_portal	

 	
 	
 dimspy.portals.mzml_portal	

 	
 	
 dimspy.portals.paths	

 	
 	
 dimspy.portals.thermo_raw_portal	

 	
 	
 dimspy.portals.txt_portal	

 	
 	
 dimspy.process.peak_alignment	

 	
 	
 dimspy.process.peak_filters	

 	
 	
 dimspy.process.replicate_processing	

 	
 	
 dimspy.tools	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_attribute() (dimspy.models.peaklist.PeakList method)

 	add_flag() (dimspy.models.peak_matrix.PeakMatrix method)

 	add_tag() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	align_peaks() (in module dimspy.process.peak_alignment)

 	align_samples() (in module dimspy.tools)

 	
 	attr_matrix() (dimspy.models.peak_matrix.PeakMatrix method)

 	attr_mean_vector() (dimspy.models.peak_matrix.PeakMatrix method)

 	attributes() (dimspy.models.peak_matrix.PeakMatrix property)

 	(dimspy.models.peaklist.PeakList property)

 	average_replicate_peaklists() (in module dimspy.process.replicate_processing)

 	average_replicate_scans() (in module dimspy.process.replicate_processing)

B

 	
 	blank_filter() (in module dimspy.tools)

C

 	
 	calculate_flags() (dimspy.models.peaklist.PeakList method)

 	cleanup_unflagged_peaks() (dimspy.models.peaklist.PeakList method)

 	close() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	
 	copy() (dimspy.models.peaklist.PeakList method)

 	count_ms_types() (in module dimspy.metadata)

 	count_scan_types() (in module dimspy.metadata)

 	create_sample_list() (in module dimspy.tools)

D

 	
 	dimspy.metadata (module)

 	dimspy.models.peak_matrix (module)

 	dimspy.models.peaklist (module)

 	dimspy.models.peaklist_metadata (module)

 	dimspy.models.peaklist_tags (module)

 	dimspy.portals.hdf5_portal (module)

 	dimspy.portals.mzml_portal (module)

 	dimspy.portals.paths (module)

 	dimspy.portals.thermo_raw_portal (module)

 	dimspy.portals.txt_portal (module)

 	
 	dimspy.process.peak_alignment (module)

 	dimspy.process.peak_filters (module)

 	dimspy.process.replicate_processing (module)

 	dimspy.tools (module)

 	drop_all_tags() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	drop_attribute() (dimspy.models.peaklist.PeakList method)

 	drop_flag() (dimspy.models.peak_matrix.PeakMatrix method)

 	drop_tag() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	drop_tag_type() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	dtable() (dimspy.models.peaklist.PeakList property)

E

 	
 	extract_peaklist() (dimspy.models.peak_matrix.PeakMatrix method)

 	
 	extract_peaklists() (dimspy.models.peak_matrix.PeakMatrix method)

F

 	
 	filter_attr() (in module dimspy.process.peak_filters)

 	filter_blank_peaks() (in module dimspy.process.peak_filters)

 	filter_fraction() (in module dimspy.process.peak_filters)

 	filter_mz_ranges() (in module dimspy.process.peak_filters)

 	filter_ringing() (in module dimspy.process.peak_filters)

 	filter_rsd() (in module dimspy.process.peak_filters)

 	flag_attributes() (dimspy.models.peaklist.PeakList property)

 	
 	flag_names() (dimspy.models.peak_matrix.PeakMatrix property)

 	flag_values() (dimspy.models.peak_matrix.PeakMatrix method)

 	flags() (dimspy.models.peak_matrix.PeakMatrix property)

 	(dimspy.models.peaklist.PeakList property)

 	fraction() (dimspy.models.peak_matrix.PeakMatrix property)

 	full_shape() (dimspy.models.peak_matrix.PeakMatrix property)

 	(dimspy.models.peaklist.PeakList property)

 	full_size() (dimspy.models.peaklist.PeakList property)

G

 	
 	get_attribute() (dimspy.models.peaklist.PeakList method)

 	
 	get_peak() (dimspy.models.peaklist.PeakList method)

H

 	
 	has_attribute() (dimspy.models.peaklist.PeakList method)

 	has_tag() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	has_tag_type() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	
 	hdf5_peak_matrix_to_txt() (in module dimspy.tools)

 	hdf5_peaklists_to_txt() (in module dimspy.tools)

 	headers() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

I

 	
 	ID() (dimspy.models.peaklist.PeakList property)

 	idxs_reps_from_filelist() (in module dimspy.metadata)

 	insert_peak() (dimspy.models.peaklist.PeakList method)

 	intensity_matrix() (dimspy.models.peak_matrix.PeakMatrix property)

 	
 	intensity_mean_vector() (dimspy.models.peak_matrix.PeakMatrix property)

 	interpret_method() (in module dimspy.metadata)

 	ion_injection_times() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	is_empty() (dimspy.models.peak_matrix.PeakMatrix method)

J

 	
 	join_peaklists() (in module dimspy.process.replicate_processing)

L

 	
 	load_peak_matrix_from_hdf5() (in module dimspy.portals.hdf5_portal)

 	load_peak_matrix_from_txt() (in module dimspy.portals.txt_portal)

 	
 	load_peaklist_from_txt() (in module dimspy.portals.txt_portal)

 	load_peaklists() (in module dimspy.tools)

 	load_peaklists_from_hdf5() (in module dimspy.portals.hdf5_portal)

M

 	
 	mask() (dimspy.models.peak_matrix.PeakMatrix property)

 	mask_all_peakmatrix (class in dimspy.models.peak_matrix)

 	mask_peakmatrix (class in dimspy.models.peak_matrix)

 	mask_tags() (dimspy.models.peak_matrix.PeakMatrix method)

 	merge_peaklists() (in module dimspy.tools)

 	metadata() (dimspy.models.peaklist.PeakList property)

 	missing_values() (dimspy.models.peak_matrix.PeakMatrix property)

 	
 	missing_values_sample_filter() (in module dimspy.tools)

 	mode_type_from_header() (in module dimspy.metadata)

 	ms_type_from_header() (in module dimspy.metadata)

 	mz_matrix() (dimspy.models.peak_matrix.PeakMatrix property)

 	mz_mean_vector() (dimspy.models.peak_matrix.PeakMatrix property)

 	mz_range_from_header() (in module dimspy.metadata)

 	(in module dimspy.portals.thermo_raw_portal)

 	Mzml (class in dimspy.portals.mzml_portal)

O

 	
 	occurrence() (dimspy.models.peak_matrix.PeakMatrix property)

P

 	
 	partition() (in module dimspy.tools)

 	PeakList (class in dimspy.models.peaklist)

 	peaklist() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	peaklist_ids() (dimspy.models.peak_matrix.PeakMatrix property)

 	PeakList_Metadata (class in dimspy.models.peaklist_metadata)

 	peaklist_tag_types() (dimspy.models.peak_matrix.PeakMatrix property)

 	peaklist_tag_values() (dimspy.models.peak_matrix.PeakMatrix property)

 	PeakList_Tags (class in dimspy.models.peaklist_tags)

 	
 	peaklist_tags() (dimspy.models.peak_matrix.PeakMatrix property)

 	peaklists() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	PeakMatrix (class in dimspy.models.peak_matrix)

 	peaks() (dimspy.models.peaklist.PeakList property)

 	present() (dimspy.models.peak_matrix.PeakMatrix property)

 	present_matrix() (dimspy.models.peak_matrix.PeakMatrix property)

 	process_scans() (in module dimspy.tools)

 	property() (dimspy.models.peak_matrix.PeakMatrix method)

 	purity() (dimspy.models.peak_matrix.PeakMatrix property)

R

 	
 	read_scans() (in module dimspy.process.replicate_processing)

 	remove_edges() (in module dimspy.process.replicate_processing)

 	remove_empty_peaks() (dimspy.models.peak_matrix.PeakMatrix method)

 	remove_peak() (dimspy.models.peaklist.PeakList method)

 	
 	remove_peaks() (dimspy.models.peak_matrix.PeakMatrix method)

 	remove_samples() (dimspy.models.peak_matrix.PeakMatrix method)

 	(in module dimspy.tools)

 	replicate_filter() (in module dimspy.tools)

 	rsd() (dimspy.models.peak_matrix.PeakMatrix method)

S

 	
 	sample_filter() (in module dimspy.tools)

 	save_peak_matrix_as_hdf5() (in module dimspy.portals.hdf5_portal)

 	save_peak_matrix_as_txt() (in module dimspy.portals.txt_portal)

 	save_peaklist_as_txt() (in module dimspy.portals.txt_portal)

 	save_peaklists_as_hdf5() (in module dimspy.portals.hdf5_portal)

 	scan_dependents() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	scan_ids() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	
 	scan_type_from_header() (in module dimspy.metadata)

 	set_attribute() (dimspy.models.peaklist.PeakList method)

 	set_peak() (dimspy.models.peaklist.PeakList method)

 	shape() (dimspy.models.peak_matrix.PeakMatrix property)

 	(dimspy.models.peaklist.PeakList property)

 	size() (dimspy.models.peaklist.PeakList property)

 	sort_ms_files_by_timestamp() (in module dimspy.portals.paths)

 	sort_peaks_order() (dimspy.models.peaklist.PeakList method)

T

 	
 	Tag (class in dimspy.models.peaklist_tags)

 	tag_of() (dimspy.models.peaklist_tags.PeakList_Tags method)

 	tag_types() (dimspy.models.peaklist_tags.PeakList_Tags property)

 	tag_values() (dimspy.models.peaklist_tags.PeakList_Tags property)

 	tags() (dimspy.models.peaklist.PeakList property)

 	(dimspy.models.peaklist_tags.PeakList_Tags property)

 	tags_of() (dimspy.models.peak_matrix.PeakMatrix method)

 	ThermoRaw (class in dimspy.portals.thermo_raw_portal)

 	tics() (dimspy.portals.mzml_portal.Mzml method)

 	(dimspy.portals.thermo_raw_portal.ThermoRaw method)

 	to_df() (dimspy.models.peaklist.PeakList method)

 	
 	to_dict() (dimspy.models.peaklist.PeakList method)

 	to_int() (in module dimspy.metadata)

 	to_list() (dimspy.models.peaklist.PeakList method)

 	(dimspy.models.peaklist_tags.PeakList_Tags method)

 	to_peaklist() (dimspy.models.peak_matrix.PeakMatrix method)

 	to_str() (dimspy.models.peak_matrix.PeakMatrix method)

 	(dimspy.models.peaklist.PeakList method)

 	(dimspy.models.peaklist_tags.PeakList_Tags method)

 	ttype() (dimspy.models.peaklist_tags.Tag property)

 	typed() (dimspy.models.peaklist_tags.Tag property)

 	typed_tags() (dimspy.models.peaklist_tags.PeakList_Tags property)

U

 	
 	unmask_all_peakmatrix (class in dimspy.models.peak_matrix)

 	unmask_peakmatrix (class in dimspy.models.peak_matrix)

 	unmask_tags() (dimspy.models.peak_matrix.PeakMatrix method)

 	
 	untyped_tags() (dimspy.models.peaklist_tags.PeakList_Tags property)

 	update_labels() (in module dimspy.metadata)

 	update_metadata_and_labels() (in module dimspy.metadata)

V

 	
 	validate_and_sort_paths() (in module dimspy.portals.paths)

 	
 	validate_metadata() (in module dimspy.metadata)

 	value() (dimspy.models.peaklist_tags.Tag property)

 _static/file.png

_static/minus.png

_static/plus.png

_images/alignment.png
Edge Block Edge Block

edge_extend—

Pt |
Centre Block Centre Block | | Centre Block

block_size

ppm -~

Hierarchical Clustering

nav.xhtml

 Table of Contents

 		
 Welcome to DIMSpy’s documentation!

 		
 Installation

 		
 Conda (recommended)

 		
 PyPi

 		
 Testing

 		
 API reference

 		
 tools

 		
 metadata

 		
 models

 		
 peaklist

 		
 peaklist_metadata

 		
 peaklist_tags

 		
 peak_matrix

 		
 portals

 		
 mzml_portal

 		
 thermo_raw_portal

 		
 txt_portal

 		
 hdf5_portal

 		
 paths

 		
 process

 		
 peak_alignment

 		
 peak_filters

 		
 scan_processing

 		
 Command Line Interface

 		
 Credits

 		
 Developers & Contributors

 		
 Funding

 		
 Bugs and Issues

 		
 Changelog

 		
 DIMSpy v2.0.0

 		
 DIMSpy v1.4.0

 		
 DIMSpy v1.3.0

 		
 DIMSpy v1.2.0

 		
 DIMSpy v1.1.0

 		
 DIMSpy v1.0.0

 		
 DIMSpy v0.1.0 (pre-release)

 		
 Citation

 		
 License

